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FOREWORD 

This report constitutes interim documentation of efforts performed on 

Contracts NASl-15783 and NASl-15795. The purpos e of this report is the 

presentation of the GIM code modifications and the latest flowfield calcula- 

tions performed with the General Interpolants Method (GIM) computer code 

for NASA-Langley Res earth Center. The work is comprised of code de- 

scription, algorithm development, turbulence modeling, reacting chemistry 

and interactive inputs in addition to flowfield calculations of various prob- 

lems of interest. Inquiries concerning this report should be directed to: 

Lawrence W. Spradley 
Lockheed-Huntsville Research & Engineering Center 
4800 Bradford Drive 
Huntsville, AL 35807 

Telephone (205) 837-1800, ext. 249 
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1. INTRODUCTION AND SUMMARY 

The General Interpolants Method (GIM) code was developed to analyze 

complex flow fields which defy solution by simple methods. The code uses 

numerical difference techniques to solve the full three-dimensional time- 

averaged Navier-Stokes equations in arbitrary geometric domains. The 

numerical analogs of. the differential equations are derived by representing 

each flow variable with general interpolant functions. The point of departure 

then requires that a weighted integral of interpolants be zero over the flow 

domain. By choosing the weight functions to be the interpolants themselves, 

the GIM formulation can produce the classical implicit difference schemes. 

Choosing the weight functions to be orthogonal to the interpolant functions 

produces explicit finite difference type discrete analogs. By appropriate 

choice of constants. in the weight functions, the GIM becomes analogous to 

standard finite difference schemes such as centered, backward, forward, 

windward and multi-step predictor-corrector schemes. The GIM analogs, 

however, are automatically produced for arbitrary geometric flow domains 

and hence is a general point of departure and provides flexibility in the choice 

of differ encing schemes . 

The GIM computer code was originally written for the CDC 7600 machine. 

The first effort that was accomplished under Contract to NASA-Langley was 

the conversion and reprogrammin g of the code for the CDC-STAR (now termed 

CYBER 203) vector processor. The GIM-STAR code was then exercised for 

three-dimensional exhaust flows for application to Scramjet engine studies. 

The next sequential study in this computational fluid dynamics effort consisted 

of the development and application of a parabolized GIM algorithm, computa- 

tion of the flow, including spillage, in a model aircraft inlet and investigation 

of linearized block implicit schemes for GIM application. These tasks were 

accomplished under the two subject contracts through a cooperative effort of 

the Hypersonic Aerodynamics and Hypersonic Propulsion ,Branches. 



The most current effort, which is the subject of this report, is a con- 

tinuation of the GIM code development and application on the CYBER 203 

mat hine . Objectives of this effort include the following. 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Complete the development of the quasi-parabolic scheme 
for solving the parabolized Navier -Stokes equations using 
spatial marching/relaxation. 

Adapt and verify the quasi-parabolic algorithm for com- 
puting subsonic forebody flow fields. 

Complete the adaptation of the quasi-parabolic code to 
hyperbolic flow field computation. 

Continue the investigation and implementation of linearized 
block implicit schemes for the GIM elliptic and parabolic 
codes. 

Complete incorporation of a two-equation turbulent kinetic 
energy transport model and a multiple length scale model. 

Incorporate ,interactive computer technology for user- 
oriented input of the geometry description for the GIM 
code. 

Complete incorporation of a hydrogen-air equilibrium 
chemistry model. 

Incorporate a hydrogen-air and a hydrocarbon-air finite 
rate chemistry model and synthesize the model into a 
global reaction model with one or more equations. 

Compute the flow field for several configurations including 
a missile fuselage, a wing/body case, a turbulent’boundary 
layer in a model inlet and mixing/reaction of hydrogen and 
air in a duct. 

Certain of these stated objectives were accomplished .in full and others 

partially. The plan of attack was to organize a set of overall tasks, some 

of which are interrelated, aimed at meeting the major objectives. This report 

is organized into sections with each section independently presenting details 

of the major tasks. The following is a summary of these sections: 

SECTION 2: THE GIM CODE - VERSION D 

Formulation, coding and check out of GIM parabolized Navier-Stokes 

code was completed. The major effort on this task was expended on obtaining 
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reliable co.ding for the marching algorithms in vector FORTRAN language. 

A relatively large amount of logic was necessary to implement the elliptic, 

hyperbolic and parabolic code in one package. The GEOM module was ex- 

tensively modified to compute the geometry data one-plane-at-a-time for use 

in the spatial marchers. The INTEG .integration module can now operate with 

a full elliptic flow field or in a spatial marching mode, either parabolic or 

hyperbolic . The GIMPLT plotting module was also upgraded to handle the 

output of the new code. The version which is now online at the Langley Center 

is termed Version D. The input data for each module of this version can be 

generated interactively on a remote terminal. Version D contains many 

features not reported in the previous user’s guide. The following items 

are especially noteworthy. 

l Elliptic, parabolic, hyperbolic solvers operational 

l Interactive input and runstream generation available 

l Explicit finite difference algorithms available in all 
three solvers; MacCormack implicit (MI) scheme 
operational in elliptic solver 

l Algebraic eddy viscosity and two-equation TKE turbu- 
lence models coded in the elliptic and parabolic solvers. 
Algebraic (Baldwin- Lomax) model only is currently 
checked out. 

l Ideal gas option operational for one or two components. 
Equilibrium, complete reaction, model in code for hydrogen- 
air mixture. 

l Geometry module can generate grids for all three solvers. 

The GIM/Version D code is available on permanent files at NASA- 

Langley. 

SECTION 3: IMPLICIT ALGORITHM DEVELOPMENT 

This task was concentrated on developing and implementing a linearized 

block implicit algorithm for the GIM code. The specific algorithm chosen is 

termed the MacCormack implicit (Ref. 1.1). The two,-dimensional version of the 

scheme presented in the MacCormack AIAA paper was coded using the GIM 
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methodology. Boundary conditions were not fully presented in the paper, thus 

development of general boundaries was required. Formulation and coding of 

a three-dimensional version of the MI scheme were also accomplished. Check 

out and investigation of the new algorithm were done on a simple- Couette flow 

problem. The following are among the major findings of this task. 

l The MI scheme is not readily vectorizable. 

l The overall numerical stability is governed by the 
streamwise CFL number = 1.0. This can still be 
many times the global CFL based on a tight normal- 
direction mesh. 

l The method appears to have good potential for com- 
puting high Reynolds number boundary layer problems. 

l With both the explicit and implicit algorithms avail- 
able in GIM, a large variety of problems can be attacked. 

SECTION 4: TURBULENCE MODEL IMPLEMENTATION 

This task consists of implementing a number of turbulence models in the 

GIM code and applying these models to a two-dimensional simulation of an 

aircraft inlet. The first type of model is termed “algebraic” and consists of 

the Baldwin-Lomax (B-L) eddy viscosity model. This scheme has been im- 

plemented, in general, in the GIM code elliptic and parabolic solvers. The 

user has at his option, no viscosity, artificial viscosity only, laminar constant 

or Sutherland’s law values or turbulent (B-L) coefficients. Also coded in 

general format in GIM is a two-equation turbulent kinetic energy (TKE) model. 

Conservation law form differential equations are written for the turbulent 

kinetic energy and for the dissipation of TKE. The B-L algebraic model has 

been checked out for an incompressible flow over a flat plate at several 

Reynolds numbers. The TKE models have not been fully verified at the time 

of this writing. The same case solved with laminar and the B-L model is 

being repeated with the two equation TKE scheme. 

4 



SECTION 5: CHEMISTRY MODEL DEVELOPMENT 

To enable the computation of chemically reacting flows, the code was 

modified under this task to include the option of ideal gas or a chemical equi- 

librium reaction scheme. The basic premise of chemical equilibrium treat- 

ment in flow fields is that the local reaction rates are much faster than the 

flow residence time. The consequence is that the reactions proceed to com- 

pletion at each point within the flow field. It has been shown that for chemical 

equilibrium the thermochemistry computations can be uncoupled from the 
flowfield solution. The thermochemistry data can then be communicated to 

the flowfield code via one of two methods. First, the flow state variables 

(P,p, T), thermodynamics (y, Mw), and species distribution can be generated 

apriori for an isentropic expansion process from a given stagnation condition 

and the results stored ,in tabular form for use via a table look-up procedure. 

Second, the chemical equilibrium properties can be computed as an integral 
part of the flowfield solution by using the equilibrium calculation (Ref. 1.2) as a 

subprogram. In either case the results are the same. A third choice is to 

specify a specific gas system, simplify the reaction model and code the equa- 

tions. Rather than solving a full set of species equations, a global specie 

conservation law is solved. In this task, we have accomplished the following 

in terms of chemistry models: 

a The simple “complete reaction” model (type 3 above) 
has been coded for the hydrogen-air system. The coding 
has been checked out on a simple case and found to be 
correct. This simple model is now being used to com- 
pute the mixing and reacting flow of air over a plate 
with hydrogen injection. 

l The full equilibrium model for any gas system has been 
previously developed for other codes. These subprograms 
are currently being added to GIM to allow equilibrium 
computations for any gas system. No results have been 
obtained at this writing. 

l The finite rate reaction model has been examined for in- 
clusion in GIM. -The equations and solution scheme can 
be coded in general, with the specific reactions to be 
allowed and the rate data being an input to the code. This 
development has been previously completed and is shown 
in Section 5. No GIM/finite rate coding has yet been done. 
This will be the major emphasis, during the coming year’s 
program. 5 



SECTION 6: INTERACTIVE INPUT MODULE 

A new module has been added to the GIM code. The purpose of the 

module is to render the input and operation of GIM much easier on the 

CYBER 203. This interactive program, entitled llRUNGIM;l uses the CDC 

FORTRAN Extended (FTN) Version 4.6 language and CDC NOS. 1.3 CYBER 

control language (CCL). RUNGIM essentially replaces the report-format 

input guides in Ref. 1.3. Upon entering RUNGIM, via an interactive terminal,. 

for example, questions are asked and the user must respond with answers 

and data. The interactive module performs the following jobs: 

l Supplies actual input data for the geometry and integration 
modules 

l Provides program updates to use as input for the CDC 
UPDATE processor 

l Supplies dynamic dimension data to set the size of GIM 
for a specific problem 

0 Sets up runstreams, including control cards, file sizes, 
etc., for executing a GIM run. 

The interactive module is currently operational at Langley for the GIM GEOM 

and INTEG modules Version D. Section 6 of this report gives details on exe- 

cuting RUNGIM and shows examples of its use. 

SECTION 7: FLOW OVER A WING-BODY CONFIGURATION 

In addition to the development aspects of this work, some effort was 

expended on applying the code to problems of interest at Langley. A number 

of cases were run in conjuction with the development work and under a sepa- 

rate l’applications” contract with NASA-Langley. One of the main pure calcu- 

lations associated with this cooperative effort is a llwing-bodpl problem. The 

inviscid, supersonic, three-dimensional flow was computed with the GIM hyper- 

bolic marching solver. The configuration consists of an ogive-cylinder fuse- 

lage with a wedge-shaped wing attached. The flow was assumed to be inviscid 

for this initial solution. The problem is currently being repeated with viscous 

effects. The wing-body interference flow field was computed with the GIM/QH 
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code using approtimately 20,000 grid points and required 210 seconds to 

solve the full three-dimensional field on the CYBER 203. The solution of the 

full flow field is shown in Section 7 as computer generated contour maps. The 

regions of wing-body interference are clearly seen. The solution for surface 

pressures are compared to measured data for this configuration. The agree- 

ment is reasonable in some regions and shows some deviations in others. 

The inviscid treatment of leading edges and corners kontributed to this 

disagreement. 

An important part of a research effort is to publish the findings and 

results of the studies. In addition to the NASA Contractor Reports, the results 

of the GIM code development and applications have been published at pro- 

fessional society meetings and in the open literature. During the past year, 

two papers were presented at AIAA meetings, both of which were published 
in the AIAA Journal, one paper in the NASA-Langley Grid Generation Con- 

ference and a presentation at the American physical Society-Division of 

Fluid Dynamics Meeting. 

To further enhance the GIM code’s capability and to utilize its current 

potential, the following items are recommended. 

Development 

l Formulate and code the MacCormack implicit method for the 
GIM forward marching solvers 

l Complete the full equilibrium chemistry model coding and 
checkout 

l Write a full finite rate model subprogram with specific 
reaction data as input 

l Synthesize a global hydrogen-air finite rate model 

l Incorporate triangular elements into the geometry package 
to facilitate easier modeling and to allow better grid con- 
trol 
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Applications 

l Compute parallel mixing of hydrogen and air in a duct, for 
equilibrium and finite rate 

l Determine the flow field, with spillage, in a three-dimensional 
inlet 

l Perform a viscous calculation with the GIM/QP solver over 
the wing/body configuration. 

An important part of the next year’s effort should be directed toward 

assisting Langley personnel in running the GIM code. A course is planned 

to acquaint users at Langley with aspects of the code that have changed or 

are new since the previous user-orientation given last year. 

SECTION 1 REFERENCES 
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Spradley, L. W., J. F. Stalnaker and A. W. Ratliff, “Hyperbolic/ 
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2. THE GIM CODE - VERSION D 

The completion of the GIM code parabolized algorithms was a major 

part of this year’s effort. Inclusion of elliptic, hyperbolic and parabolic 

solvers was accomplished. As a result of these updates to the code, a number 

of modifications were made to each module: 

l GEOM - Generates geometric boundaries of the problem 
and the finite difference grid 

l MATRIX - Performs matrix operations to obtain finite 
difference operators for the GEOM grid 

l INTEG - Integrates the flow field with user specified 
initial and boundary conditions 

l GIMPLT - Displays grid and/or flow field in contour maps 

l RUNGIM - Interactively produces a runstream and input 
data for the GIM code 

With the inclusion of the updated capability, the lastest version (as of this 

writing) of the code is termed GIM/Version D. The following paragraphs 

summarize the coding changes made to achieve Version D. Charts showing 

the revised input formats are also given. Sections 3 through 7 of this report 

presents the technical aspects of each task in detail. 

2.1 PROGRAM MODIFICATIONS 

Several modifications were made to the CYBER 203 version of the GIM 

code geometry module (GEOM). Some of the modifications were necessary 

to remain compatible with Version D of the integration module, and some were 

made to increase user facility and reliability. 

The most sign,ificant modification to the geometry module ,involved 

changing the output file logic so that data could be output a line (2-D) or 
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plane (3 -D) at a time as required by the QP version of the integrator module. 

This modification greatly reduced the storage requirements of the geometry 

module for QP-type analyses. In order to be able to compute in either the 

elliptic or QP modes the output logic for both the geometry data and the analog 

data had to be modified extensively. 

Another modification was to incorporate logic to count the number of 

boundary nodes in a given geometry. The number is used in dimensioning 

the integer module but is difficult to determine manually for complex geom- 

etries. 

.r 

The final set of modifications involved rework on some of the logic in 

the module that was too difficult for users to understand. Changes were made 

to the circular arc, conical arc and edge of revolution algorithms to increase 

their utility and reliability. 

The MATRIX module for the elliptic solver remains essentially ,intact 

from the previous version. The reading/writing of files has been changed 

for compatibility with GEOM D. At this writing, there are two matrix modules 

on file at the computer center. 

l MATRIX D - For use with elliptic solver 

l MATQP D - For use with spatial marching 
solvers 

The coding of the matr,ix operations for the two different solvers necessitated 

construction of separate modules. 

The major portion of the coding changes for GIM/D was made to the 

integration module, INTEG. Considerable logic is necessary to allow inte- 

gration ,i.n arbitrary three-dimensional regions. The INTEG D module 

contains: 

l Elliptic, hyperbolic and parabolic solves 

l Two and three dimensions 
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l Inviscid, laminar or turbulent flow 

l One or two-gas (ideal) or simplified equilibrium 
chemistry 

l Explicit finite difference or the new “Maccormack~~ 
implicit algorithm 

l Interactive input of data. 

The storage and dimensioning of INTEG was also reworked to make optimum 

use of the high speed memory of the CYBER 203. 

The GIMPLT graphics module required some extensive reworking to 

make it compatible with the spatial marching routines. First, the program 

was simplified by eliminating all unnecessary coding. The original plotting 

routine had several options which are currently unused and .thus these were 

eliminated. Next, internal variable names corresponded to symbols which 

were also confusing. These variable names have been changed and are now 

representative of actual usage as it applies to the GIM code. Some external 

variable names used as input were changed for consistency and readability. 

However, the order of input and location of variables has remained the same 

as the STAR version of the plotter. This is consistent with published docu- 

mentation. Also, the subroutines have been resequenced to aid tracability 

of “GO TO” and ItDO” statements. Then, comments were placed throughout 

the subroutines to aid users in locating regions of interest for debugging or 

modifying purposes. The program has been simplified, rewritten, and in- 

ternally documented for ease of usage. 

Plot documentation has been improved by the addition of subtitles for 

contour and velocity vector plots. The subtitles are located at the bottom 

of each plot frame to the right of the main title. 

The size of the model that GIMPLT can handle has increased dra- 

matically from about 5,000 nodes last year to over 28,000 nodes currently. 

The primary limitations are the core size of CDC 7600 and the unavailability 
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of the CY203 for plot runs. The alternative has been to rewrite the plot program 

or to do cumbersome external data file manipulation to reduce the number of 

nodes which can be plotted for a given run. Fortunately, it has been possible ’ 

to develop a way for the plotter to handle models of up to 28,000 nodes through 

variable manipulation within the plotter. This approach maximizes the usage 

of available core. To further ,increase the plotter capacity would require 

having more core available since the plotter must have at least enough room 

to store the X, Y and Z positions for each node. This modification allows one 

version of the plotter to be used for both small and large models without ex- 

ternal data file manipulation for models up to 28,000 nodes. 

2.2 STATE OF THE CODE 

The GIM/D code is cataloged on permanent files at NASA-Langley. 

It is recommended at the current time that the interactive input module 

described in Section 6 be used for inputting the GIM code. For com- 

pleteness and for information on the required program inputs, the follow- 

ing charts are included here, These summary’input guides can be used 

in conjunction with the previous GIM documentation to fully describe the 

codes operation: 

GIM Manual - NASA CR 3157; 1979 

Hyperbolic/Parabolic -NASA CR 3369; 1980 

CHARTS: Input Guides 

2-l DYNMAT D 

2-2 DYNDIM D 

2-3 GEOM D 

2-4 MATRIX D 

2-5 MATQP D 

2-6 INTEG D 

2-7 Notes on INTEG D 

2-8 GIMPLT D 
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Cards/Format 

NX IDIM NSPEC NXMAX NMATE NSAV METHOD 

(715) 

NX = total number of nodes (elliptic) 
= number of nodes in one cross-plane (Qp) 

IDIM = dimensionality (= 2 or 3) 

NSPEC = number of special nodes 
= 0 for GEOMD runs 

NXMAX = maximum number of nodes in a cross-plane 

NMATE = number of nodes to be checked for mating 
e.g., for a surface of 20 nodes mated to a surface of 50 nodes 
NMATE > 50. When in doubt set NMATE to the number of 
nodes in-he largest zone. 

NSAV = number of planes processed per record on the geometry files. 
The actual number of nodes processed per record is 

(NSAV t 1) *NXMAX - elliptic 

2 *NXMAX - QP 

METHOD = 0 for elliptic runs 

> 0 for QP runs 

Chart 2-l - DYNMAT ,D Input Data 
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Cards/Format 

MN IDIM ISPEC NSP MNB METHOD IREC 

(715) 

MN = total number of nodes (elliptic) 

= number of nodes in one cross-plane (QP) 

IDIM = dimensionality 

ISPEC = two-gas flag = 0 1 ideal gas 

= 1 2 ideal gas 

NSP = number of special nodes 
(equal to NSPEC input to matrix module for QP) 

MNB = number of boundary terms (IB # 9) 
= 0 program sets MNB = MN 

METHOD = f. 2 elliptic 

> 2 parabolic 

IREC = number of records on the GEOM file 

= 1 for QP 

Chart 2-2 - DYNDIM ,D Input Data 
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Card Type 

1 

2 

3 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Parameter List/Format 

HEADER(I): I = 1,72 

(12A6) 

NZONES, IDIM, ISTEP, IMATRX, IMATE 

(515) 

IWRITE, LWRITE, NWRITE 

(315) 
KC(I), I= 1,6 

(6A5) 

NSECTS 

(15) 
MAPE(I), I = 1, 12 

(1215) 

MAPS(I), I = 1,6 

(615) 
(IBWL(I), I = 1,6), ITRAIN 

(715) 
(NNOD(I), I = 1, 3), (ISTRCH(I), I = 1, 3) 

(615) 
DIVPI(I), I = 1) 3 

(3E10.4) 

[AETA(J,I), I = 1, NN~D(J)] , J = 1, IDIM 

(8E10.4) 

[(Ac(I,K,J),I= 1,8), K=l,5], J= 1,4or 12 

(8E10.4) 

p(I. J,), I = 1,83, J = 1, 6 
(8E10.4) 

(PT(1, J), I = 1,5), J = 1,4 or 12 

(8E 10.4) 

5 
(PMAX(I, K, J), I = 1,5), ETAMAX(K, J), K = 1,4], 

= 1,4 or 12 

(6E 10.4) 

Chart 2-3 - GEOMD Input Guide 

See GIM documentation far explanation of FORTRAN symbols, 
NASA CR 3157 and CR 3369. 
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Card 

1 

2 

3 

Parameters 
* 

NDX, NDY, NDZ, ISNOPT 

KC(I), I= 1,6 

Nl,IC,NT 

Chart 2-4 - MATRIX D Input Guide 

Format 

(415) 

(6A5) 

(315) 

See GIM documentation for explanation of FORTRAN symbols, 
NASA CR 3157 and CR 3369. 
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Card Type 

1 

2 

3 

4 

Parameter List/Format 

ITITLE(I; I = 1,78 
(13A6) 

KCl(I), I= 1,3, KC2(1) (I= 1,3) 
(6A5) 

NPLT(I), MIZ(I), MIS(I), NATT(I), L2(1), L3(1) 
;;;5;, NZONES t 1) 

IN 1, IIC, INPP, IPRMAX 
(415 1 

Cards 1 and 2 are as previously defined. 

Card 3: ZONE/PLANE Data 

NPLT(1) - Number of cross planes in Zone I 

MIZ(1) - Number of nodes in q2 in Zone I 

MI3(1) - Number of nodes in r13 in Zone I 

NATT(1) - Plane of attachment of Zone I = 0 (or blank) for I = 1 

L2(1), L3(1) - Grid coordinates for first mated node in Zone I=0 
(or blank) for I=1 

EXAMPLE: 5 x 5 node cross plane mated to 7 x 7 node cross plane 
(xl s are mated nodes) 

. xxxxx. 

. xxxxx. 

. xxxxx. 

. xxxxx 
7 

1st mated node 

. xxxxx. 
i L2=3 

. . . . . . . 

. . . . . . . 

t 
J q2 

L3=2 13 

Chart 2-5 - MATQP D Input Guide 

*See GIM documentation for explanation of FORTRAN symbols, 
NASA CR 3157 and CR 3369. 
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This input is terminated with a -1 in Columns 4 and 5. 

Card 4: Analog Print Specifications 

IN1 - First node to be printed 

= 0 no nodes printed 

= -1 terminates input 

IIC - Nodal increment 

= 0 only INlst node printed 

INPP - Number of planes to which this specification applies 

IPRMAX - Maximum number of pr,int nodes 
= 0 all nodes possible under this specification will be printed 

Notes: 1. All the INPP must sum up to the total number of planes in the problem 

2. If only a -1 appears in Columns 4 and 5 no analogs will be printed. 

EXAMPLE 

0 0 21 1 

2 2 5 10 10 

12 6 6 
. 

-1 

No analogs are printed for the first 21 planes; analogs for the 2nd, 4th, 

6th , . . . 20th nodes are printed for the next five planes; analogs for the lst, 

3rd, 5th,. . . node are printed for the last six planes. 

Notes on MATQPD Output 

1. No output appears for plane 1 (the initial input plane) 

2. For plane 2 or plane NATT(1) $1 for which the number of nodes 
in a cross-plane .in zone I is greater than that in Zone I-l (i.e., 
planes which require flowfield input), analogs are printed for 
nodes IN1 through 2WX (where NX is the number of nodes in a 
cross-plane) incremented as specified. 

3. For all other planes the node number printed on the output is 
increased by NX since nodes 1 to NX are in the preceding plane. 
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Card Type 

1 

2 

2a 

3 

3a 

3b 

4* 

4a+ 

5+ 

5a+ 

6 

7 

7a 

8 

9 

lo+ 

Parameter List/Format 

ITITLE(1): I = 1, 80 (80 Al) 

IDIM, METHOD, ITMAX, IPRNT, ITSAVE, ISTART, 
IOTYPE, IUNITS, ITSTRT, IVISC, IDIST, 
ISPEC, IDS, IBOUND, ITHERM 

(1515) 

IPSQ, INORM, ISBSM 
(315) 

INFOUT, IJUMPO, JJUMPO, NIOUT, NJOUT, ICALC, 
AMFLW 

(615, E1O.O) 

INFINL, IJUMPI, JJUMPI, NIIN, NJIN, ICALC, OUTMFL 
(615, E1O.O) 

INFINL,. IJUMPI, JJUMPI, NIIN, NJIN, INFOUT, IJUMPO, 
JJUMPI, NIOUT, NJOUT, IGALC 

(11151 
IORD, IPCVG, SUMCHK, SLPCHK 

(215, 2ElO.O) 

NPLT(I), MI2(1), MI3(1), NATT(I), L2(I), L3(I) 
I = l,NZONES t 1 

(615) 
NN, NNX, NDX, NNY, NDY, NNZ, NDZ, NPM, KZONES 

(915) 

KST, KNX, KDX, KNY, KDY, KNZ, KDZ 
(715) 

DTIME, DTFAC, INCDT 
(2E10.0,15) 

REALMU, REALK, GAMSl, GAMS2, WMl, WM2, DK,RK 
(8ElO.O) 

VF(I), I= 1,8 
(8ElO.O) 

EMU, ELAM, ERHO, ESPEC 
(4ElO.O) 

KC(I), I = 1,6 
(6A5) 

NNPM(I), NCPM(I), (NNCPM(1, J), J = 1,5), ANGPM(1); 
I= 1,NPM 

(715, E1O.O) 

Chart 2-6 - INTEG D Input Guide 

See GIM documentation for explanation of FORTRAN symbols, 
NASA CR 3157 and CR 3369. 19 



Card Type 

11+ 

12 

13 

14 

15+ 

15a” 

16::’ 

16a* 

NCT(1, J,K), PXPM(1, J, K), PYPM(1, J,K): 
K= 1,4; J = 1, .NCPM(I); I = 1, NPM 

(15, 2ElO.O) 

RHOZ, PZ, ASTAR, NINC, A, B 
(3E10.0,15, 2ElO.O) 

NJ, INC, NTOT, ITAN, ITYPE 
(515) 

RI, UI, VI, WI, PI, CSI 
(6ElO.O) 

Nl, IC,NT 
(315) 

INl, ICC, INPP, IPRMAX 
(415) 

NJ, INC, NTOT, ITAN, ITYPE 
(515) 

RI, UI, VI, WI, PI, CSI 
(6ElO.O) 

“QP Only 

‘Elliptic Only 

Chart 2-6 - INTEG D Input Guide (Concluded) 

See GIM documentation for explanation of FORTRAN symbols, 
NASA CR 3157 and CR 3369. 
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Card 2: 

IVISC = 0 - Inviscid Euler Equations 
= 1 - Numerical damping only 

= 2 - Laminar viscosity and damping 
= 3- Baldwin/Lomax turbulence model 

ITHERM = Thermal boundary conditions for no-slip walls 
= 0 - Free thermal boundaries 
= 1 - Adiabatic walls 
= 2 - Constant temperature walls 

Card 2a: 

IPSQ = SUMSQ print increment 
= N, SUMSQ’s printed every Nth iteration 

INORM = 0 SUMSQ’ s normalized by 1st iteration values 
> 0 SUMSQ’s not normalized 

ISBSM = 0 SUMSQ’s of conserved variables calculated 

> 0 SUMSQ’s of primitive variables calculated 

Card 4: 

IORD = 1 1st order backward 

2 2nd order backward 

IPCVG = Convergence check increment 
= N, convergence checked at every Nth iteration 

SUMCHK = SUMSQ tolerant e 

Convergence assumed if all SUMSQC tolerance 

SLPCHK = SUMSQ slope tolerance 

Convergence assumed if all slopes of the SUMSQ 
curves are < SLPCHK 

Chart 2-7 - Notes on the New Input for INTEGD 
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Cards 4a: 

These are the same as for MATQPD input. This sequence 
must be terminated with a -1 in Cards 4 and 5. 

Card 6: 

INCDT <O - Implicit technique 

Card 7a: (If IVISC 5 1 omit Card 7a) 

Sutherland’ s law: 

J-‘(l) = Sutherland’ s Constant 

= 1.458043-5 g/cm-set (K1’2) 

= 7.303503-7 lbm/ft-set (R 10 ) 

VF(2) = T, 

= 110.33 K 

= 198.6 R 

Baldwin/Lomax Turbulence Model 

VF(3) = CCP = 1.6 

VF(4) = CKLEB = 0.3 

VF(5) = (CWK) - l/2 = 2.0 

VF(6) = PrT = 0.9 

VF(7) = CMUTM = 14.0 

Note on variable viscosity: 

The viscosity at any node is computed as 

p = pd + PL + i+ 

where 

‘d = numerical damping coefficient 

pL = REALMU + VF(l) * T 3/2/( T + T*) 

pT = Turbulent viscosity. 

22 Chart 2-7 - (Continued) 



The laminar thermal conductivity is calculated through the 
PC 

lan-xlnar Prandtl number -i;E which is now entered as REALK. 

Card 15a: QP print control 

IN1 

IIC 

1 

as described for MATQPD 
INPP 

IPRMAX 

Note on plane numbering: 

The plane number which appears in the QP integration is the 
number of integration planes. That is, one less than the actual 
geometric planes since the first plane is input. The total number 
of integrated planes, MAXPLN, is thus one less than the total 
number of planes. All of the INPP in the print specifications 
above must sum up to MAXPLN. 

Cards 16 & 16a: 

Input ,initial conditions for added zone input surfaces. These 
assume the same form as cards 13 and 14. Only card input 
and USERlP options are available for these. This input is 
read at the time that the plane is integrated. The information 
is stored at the end of the primitive variable vectors. As a 
result the first node to be .initialized, NJ, is 

NJ = 2 ::: NN + 1 

where NN is the number of non-input nodes ,in the cross-plane. 

Chart 2-7 - (Concluded) 
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Card Type 

1 

2 

3 

Specs. 

S-l 

s-2 

Grid 

G-l 

VVEC 

Parameter List/Format 

ITIT LE 
(A40) 
NN, ITRSTR, ITRBLK, KDIM, ISPC 
(515) 

GAMMA, FACTOR, RGAS, PO, TO, RHO0 
(6ElO.O) 

NPLT, STITLE, IVIEW, ISYM, ITHETl, 
IAXISl, ITHET2, IAXIS2, IXTABL, IYTABL, 
VFAC 

(15, 5X, A20, 815, E1O.O) 

NTYPE, JO, IJUMP, JJUMP, NI, NJ, IPRNT, 
JO0 

(815) 

‘GRID,’ IOPT, ICSCLE, NSPECS, (ISPEC(I), 
I= 1, NSPECS) 

(A4, 1X, 15, 25X, 215, 715) 

V-l ‘VVEC,’ IOPT, NITER, ICSCLE, NSPECS, 
(ISPEC(I), 1=1, NSPECS) 

(A4, IX, 215, 20X, 215, 715) 

(NITER = & for QP) 

Chart 2-8 - GIMPLTD Input Guide 
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VVEC 

v-2 

I-l 

Contours 

C-l 

c-2 

I-l 

L-l 

(ISPEC(I), 1=8, NSPECS) (if NSPECS>7) 

(45X, 715) 

(ITER(I), 1=1, NITER) 

(1615) 

ITYPE, IPOT, NITER, NC, ITABLE, INCR, 
ICSCLE, NSPECS, ISPEC(I), 1=1, NSPECS) 

(A4, 1X, 515, 5X, 215, 715) 

(ISPEC(I), 1=1, NSPECS) (if NSPECS>7) 

(45X, 715) 

(ITER(I), 1=1, NITER) 

(1615) 

(CVAL(I), 1=1, NC) 

(8ElO.O) 

(No I-l cards for QP) 

Description of Input Data 

Card 1 

ITITLE - This problem identification title appears on the bottom left 
of the plot frame for Grid, Contour, and Velocity Vector 
plots as one line of forty characters. 

Card 2 

- The total number of nodes in the model which is being plotted. 
NN must be consistent with the GEOMD and INTEGD runs 
which generated the grid and flow field. 

Chart 2-8 - (Continued) 
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ITRSTR - The iteration number of the first set of flow field informa- 
tion on the INTEGD File 22 which is being used as input to 
the GIMPLTD module. (= -1 for QP). 

ISPC - The two gas flag used in INTEGD 

ISPC = 0 for a single gas 
= 1 for two gases 

Card 3 

RGAS - The gas constant as input in INTEGD 

Card S-l 

STITLE - The plot specification title. This subtitle will appear on 
the bottom right of grid, contour and velocity vector 
plots as one line of twenty characters. 

Cards-2 - Element generation control parameter 

NTYPE = 0 a single element is input 

= 2 a network of two-node line connectors is generated 

= 3 a network of 4-node elements is generated con- 
connecting two zones with different numbering 
schemes 

= 4 a network of 4-node elements is generated 

Default NTYPE = 0 

JO - For NTYPE = 3, JO is the first node in the first string of 
nodes. 

IJUMP - For NTYPE = 3, IJUMP is the nodal increment for the first 
string of nodes. 

JJUMP - For NTYPE = 3, JJUMP is the nodal increment for the 
second string of nodes. 

NI - For NTYPE = 3, NI is the number of elements generated. 

NJ - For NTYPE = 3, NJ = 1 

JO0 - For NTYPE = 3 only, JO0 is the first node in the second 
string of nodes. 

Example 

For NTYPE = 3, a network of 4-node elements, are generated connecting 
two zones with different numbering schemes as illustrated on the follow- 
ing page. 
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Where Jl, J2, J3 and J4 are the nodes connected by the element that 
the algorithm generates for I= 1 through NI. 

Jl = JO + (I- 1) $ IJUMP 

J2 = JO0 t (I-l) :: JJUMP 

J3 = J2 + JJUMP 

J4 = Jl + IJUMP 

NTYPE = 3, JO = 1, IJUMP = 1, JJUMP = 10, NI = 4, NJ = 1, JO0 = 10 

1 2 3 4 5 

J= 1 

10 20 30 40 50 

I=1 I=2 I=3 I=4 

Note on calculation of core sizes 

The total core requirements for plotting including the program storage, 

sys tern library, and all data arrays is given by the following formula. 

KFLIO = KMAX10 t 2400010 

where, 

KMAXIO = NWRDS + 3 * NN + 1 

= 1000 t 3 * NN + 1 (NN = number of nodes) 

KMAX is the dimension of the array “A” in the GIMPLTD MAIN program 

which is normally set to 46001 and must be changed to plot a larger model. 

KMAX is also a program variable which must be reset .in the MAIN program 

for a larger model. 

For KMAX = 46001, the maximum number of nodes in a model to be 

plotted is 

NN = KMAX - NWRDS - 1 
3 

Chart 2-8 - (Continued) 27 



NN -46,001 - 1000 - 1 
3 

= 15000 nodes 

The field length requirement for KMAX = 46,OOlis 

KFLIO 
= 46,00110 t24,00010 

= 20,00110 

= 210,5618 

A field length of 330,0008 (110,59210)permits the following 

KMX1O = 110,59210 - 24,00010 = 86,592 1o 

- NN = 86,592 1000 - 1 
3 = 28 I 530 nodes . 

Chart 2-8 - (Concluded) 

28 



3. IMPLICIT ALGORITHM DEVELOPMENT 

3.1 INTRODUCTION 

Numerical solution of the unsteady Navier-Stokes equations by explicit 

finite difference techniques has a number of disadvantages. The most serious 

one, from a practical engineering viewpoint, is the small time steps which 

are usually required to maintain stability. Computation of boundary layer 

flows at high Reynolds number, for example, requires a fine grid near solid 

boundaries, hence very small time steps and long computer run times. 

Numerical treatment of the steady state parabolic form of the Navier- 

Stokes equations face many of the same difficulties as the elliptic form. The 

spatial marching step size is constrained by the small grid spacing required 

to resolve boundary layers normal to a solid wall. Thus, marching downstream 

great distances can result in impractically long run times. 

One apparent solution for these difficulties is the use of implicit methods, 

some of which are unconditionally stable for any size time step/spatial march- 

ing step. These schemes are not without problems of their own in terms of 

their practical use. Among the major difficulties are the following: 

1. Implicit finite differences, in general, lead to systems of 
nonlinear algebraic equations when applied to the Navier- 
Stokes equations. These must either be solved directly 
or linearized in some manner. 

2. Multi-dimensional implicit methods lead to very large 
sys terns of simultaneous algebraic equations. Even for 
linear systems, the efficient solution is not practical due 
to large size of the coefficient matrix. 

3. Fully implicit methods cannot be programmed as efficiently 
as explicit methods on advanced vectorized machines such 
as the CYBER 203. 
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In a recent paper, MacCormack (Ref. 3-l) presented a new implicit 

method which circumvents the first three of the above mentioned difficulties. 

The new method contains two stages. The first stage utilizes the explicit, 

second order, predictor -corrector finite difference method developed by 

MacCormack in 1969 (Ref. 3-2) which is widely used in many codes, including 

the GIM code. The second stage removes the explicit stability requirements 

by numerically transforming the finite difference equations into an implicit 

form. The resulting matrix equations are either upper or lower block bi- 

diagonal equations and are easily solved. Morever, the method preserves 

the conservation form of the Navier-Stokes equations so that shock capturing 

techniques can be employed. Because of these advantages along with its 

straightforward extension to three dimensions, the MacCormack implicit 

method was selected for implementation in the GIM code. 

3.2 TWO-DIMENSIONAL DEVELOPMENT 

The GIM code formulation of the implicit MacCormack method begins 

with the Navier-Stokes equations .in conservation law form. In two dimensions 

and by neglecting body force terms and heat sources, these equations can be 

written as 

P 

Pu i1 u= pv 

p& 
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r Pu 1 
E = 

pu2 t P - Txx 

puv - 7 
XY 

L 
(p&J t P) u - UTxx - v7xy - 9x 

1 

(PC t P) v - “Txy - VW - qy 

where 

%x = 2&+x 

rYY 
= way aY.,(g+g) 

7 XY 
= j..L (8 t !g) 

3T 4, =kax 

and where 

P = mass density U = x-component of velocity 

; 

= y-component of velocity P = pressure 

= total energy I-L = kinematic viscosity coefficient 

A = bulk viscosity coefficient k = thermal conductivity 

T = temperature t = time coordinate 

XIY = space coordinates 
31 



P=(Y-1)P 4? [ - u2;q (ideal gas law) 

The subsequent development of the GIM code formulation parallels that of 

MacCormack up to the presentation of the finite difference equations (Eq. (8) 

of Ref. 3-l). Here the finite difference equations are written in a form com- 

patible with the GIM code as follows: 

A E? A+F; 
AU;=-{*+ 

AY ) 

P (I-At -A+IAJ . )(I-& AttBJ . )6Un+l 
AX AY i = AU; 

zi ui = U;t At 6UF 

(3. la) 

(3. lb) 

(3.lc) 

AUnfl 
A-EF A F? - ‘1 

i 
= - 

Ax + Ay 
> 

(3.2a) 

c I (ItAt A- IAl a- IBi Ax l ) (It At Ay l ) 6U.n+1 = AU.“+’ 
1 1 (3.2b) 

where 

(3.2~) 

n = time level i = node number 
n 

6Un+l - 
ni-1 

i, explicit i - i, implicit 
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A+ A- A+ A 
and where - Ax * ax’ Ay - and ry are difference operators given by 

(for any property Q) 

AtQi 
NCON 

7ir= c a+ Q itj i+j 2 Forward analog of 

j=O 

A-Q. NCON 
+ =, 

c a- .Q. 1-J i-j 3 Backward analog of 

j=O (3.3) 

A+Qi NCON 

-c ay- 
b+ Q itj itj a Forward analog of 

j=O 

A Q. NCON 
- ‘1 

hy= c b, .Q. 1-J i-j 3 Backward analog of 

j=O i 

The coefficients at, ai, bl and bf used above are the finite difference coef- 

ficients at node i obtained from the GIM interpolant scheme for the explicit 

MacCormack method on an arbitrary mesh with NCON connections to adjacent 

nodes. The Jacobian matrices1 A I and 1 B I are given by 

I I A = S;l DASx and B = S 1 I -lD S 
Y BY 

with Sx, Sy, DA and DB as defined in Ref. 3- 1 and presented in Appendix 3.A 

at the end of this section. 

The solution of Eqs. (3.1) and (3.2) proceeds as outlined in Ref. 3-1 with 

two exe eptions . First, the use of the general difference operators given by 

Eq. (3.3) produces a set of difference equations that is either upper or lower 

block triangular. These equations are solved directly via backward or forward 

substitution with little more computational work than for the block bidlagonal 
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system, which is a special case for rectangular meshes. The second devia- 

tion from the process described in Ref. 3-l involves the implementation of 

boundary conditions and is discussed next. 

3.3 BOUNDARY CONDITION DEVELOPMENT 

The solution process in the published implicit MacCormack method 

involves forward and backward I1 sweeping” over the finite-difference mesh 

points up to but not including the boundary points. Boundary values are fixed 

in terms of U and/or AU. Note, however, that in the GIM code formulation, 

the explicit -implicit sequence, 
au 

Eqs. (3.la), (3.lb) and (3.2a), (3.2b), operate 
pith and on at instead of AU. Boundary values are set in terms 

of $$ via constraints derived from a quasi-variational technique (Ref. 3-3). 

To accommodate these boundary conditions, the GIM code formulation employs 

a set of pseudo-mesh points around the periphery of the actual mesh, as 

illustrated below: 

x 1 x % % X % % Ir 

x 

1 

x 

% 

x 

L I 1 % % X % x x 

l Real Mesh Points x Pseudo-Mesh Points 
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At these pseudo-mesh points, the value of at 3 is set to zero for all time; 

the value of U is not set nor indeed ever required. The GIM code explicit 

step, Eqs. (3.la) and (3.2a), proceeds as usual, utilizing values at real 
mesh points only. The implicit step, Eqs. (3.lb) and (3.2b), now involves 
forward and backward sweeping on all real mesh points including the boundary 

points. Boundary conditions are imposed on gy after the explicit step, Eqs. 

(3.la) and (3.2a), and again after the implicit step, Eqs. (3.lb) and (3.2b). The 

pseudo-nodes are used in the implicit differenc.ing scheme to ensure that the 

resulting difference matrix is a strictly upper or lower block triangular 

matrix. au The boundary value of at 3 0 at the pseudo-nodes is used to drive 
au the solution to the steady-state condition at = 0 everywhere. 

The boundary condition treatment described above is easily extended to 

non-rectangular and non-orthogonal meshes in both two and three dimensions. 

This flexibility is ,inherent in the general difference operators, Eqs. (3.3), 

employed in the GIM code and permits consideration of a wide range of geo- 

metrical configurations in a very convenient manner. 

3.4 THREE-DIMENSIONAL DEVELOPMENT 

The three-dimensional implicit GIM code formulation is very similar 

to the two-dimensional formulation. The factored operator and Jacobian 

diagonalization approach used in the implicit MacCormack method allow a 

simple straightforward extension to three dimensions with only a relatively 

small increase in computational labor. The three-dimensional implicit GIM 

code equations are presented in Appendix 3.B at the end of this section. 

3.5 RESULTS AND DISCUSSIONS 

The implicit MacCormack method has been formulated and coded to be 

compatible with the GIM code. Both the two- and three-dimensional versions 

are available as an option in the current INTEG module. Only limited exper- 

ience with the method has been acquired thus far and this almost exclusively 

with simple two-dimensional problems on rectangular meshes. However, 

this has been sufficient to establish several important characteristics of the 

method. 
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3.5.1 Vectorization 

Like other implicit methods, the implicit MacCormack method does not 

appear to be amenable to vectorizafion for use on the STAR or other vector 

machines. Thus the GIM code implicit routines execute much more slowly 

than do the highly vectorized explicit routines. Some gain has been achieved 

by partially vectorizing the computation of the eigenvalue vectors and the 

components of the S matrices. However, the bulk of the .implicit routines 

including the backward and forward mesh sweeps and imposition of boundary 

conditions remains in scalar coding. As a result, it appears that implicit 

runs will execute about three times slower per iteration than explicit 

runs. Some additional gain may yet be achieved through refinement of the 

implicit coding as more experience is acquired. 

3.5.2 Stability 

The published implicit MacCormack method of Ref. 3-1 is described as 

being stable for unbounded At. However, this has not been the case with the 

implicit GIM code formulation. Thus far, the upper bound on At for stability 

appears to be the value of At at which the flow field computation begins to 

become implicit ,ti the streamwise or dominant flow direction, i.e., 

CFL s tr eamwi s e = 1.0. For a two-dimensional problem on a rectangular 

mesh with the streamwise direction in the x-coordinate direction, this upper 

bound is given by Eq. (9) of Ref. 3- 1 as 

l/2 
+ d/Ax + (2v/phx2) 

In no instance has an implicit GIM code calculation been able to exceed this 

upper -bound and remain stable. Even calculations which have been integrated 

in time to an apparent steady state quickly become unstable if At is increased 

beyond the CFLstreamwise 5 1.0 limit. 
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While there is yet no explanation for the apparent descrepancy between 

the reported and observed stability of the method, several items are being 

investigated. Variations in the boundary condition implementation, modifica- 

tion of the eigenvalue terms, and permutations of the x-y operator sequence 

and forward-forward/backward-backward sequence are all being examined 

to determine their effect on the stability limit. 

An important point to note is that even if the CFLstreamwise 5 1.0 

stability limit cannot be relaxed or circumvented, the implicit GIM code 

option will remain a very useful and valuable addition to the code. Many 

problems of current interest require a highly refined mesh in directions 

normal to the dominant flow direction in order to resolve boundary layers 

and other viscous phenomena. In these instances, the implicit GIM code 

option can be used to run with a time step many times larger than that im- 

posed by explicit stability requirements (CFL f. 1.0) and yet remain within 

the At bound imposed by the CFLstreamwise~ 1.0 limit. As an example, 

a simple two-dimensional Couette flow has been integrated us,ing the implicit 

GIM code option with time steps as large as 18 times that required by explicit 

stability requirements and remained stable. It is envisioned that the gain 

over the explicit stability limit could be much larger for highly refined meshes. 

3.5.3 Recommendations 

While the vectorization possibilities and stability limit should continue 

to be investigated, the implicit GIM code option can be used to calculate 

several more difficult and realistic flow fields,including a shock wave-. 

boundary layer ,interaction problem, a two-dimensional inlet flow with spill- 

age, a three-dimensional internal duct flow, and a turbulent boundary layer 

problem. In the near future, the implicit GIM code option can be coupled to 

the Quasi-Parabolic (QP) routines to allow efficient computation of the flow 

over wing-body and missile configurations. Other possibilities included 

coupling the implicit routines with the chemistry routines or the two-equation 

turbulent kinetic energy model. 
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Appendix 3.A 

TWO-DIMENSIONAL IMPLICIT GIM CODE EQUATIONS 

Governing Equations 

P 
PU 

u = 

H 

PV 
PCS? 

E = 

F = 

(pe t P) v - urxy - vryy - qy 

where 

aT 
qx = kz 
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and where 

P = mass density ll = x-component of velocity 

ii 

= y-component of velocity P= pressure 

= total energy P= kinematic viscosity coefficient 

x = bulk viscosity coefficient k = thermal conductivity 

T = temperature t = time coordinate 

X,Y = space coordinates 

I?=(?‘-l)P [g --u21v2] (idealgas law) 

Finite Difference Equations 

P 
l ,6Uy = AUn 

i 

- = Aunt1 
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where 

n = time level i = node number 
n 

HJntl 
ntl 

i 
= 

i, explicit i, implicit 

At A At A 
and where - Ax ’ ti ’ F and Ay z are difference operators given by 

(for any property Q) 

A+Qi 
NCON 

-= 
Ax c at Q itj itj 5 Forward analog of 

j=O i 

A-Q. NCON 
Ax1 = c a: .Q. 1-J 1-j 2 Backward analog of 

j=O 

AtQi 
NCON 

-= c 
j=O 

‘t+j Qitj z Forward analog of 

A Q. NCON 
- 1 

ay= c b.- .Q. 1-J i-j 3 Backward analog of 

j=O i 

t with finite difference coefficients a. , a.‘, b+ and br. 1 1 1 

Jacobian Matrices 

I I A = S;l DA ?x I I B = S-lD S 
Y BY 
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where 

r 1 0 0 - l/c2 1 
0 0 

s= 
X I o “0’ 1 

0 -pc 0 

I 

1 0 0 

0 1 0 

s= 

Y 0 0 PC 
0 0 -pc 

1 

0 
1 

1 

-l/c2 

0 

1 

1 
1 

c =$s 

r 

! 
xAl 

0 
DA = 

0 

0 

h Bl 

0 
DB = 

0 

l- 

1 

-U/P 

-V/P 
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1 

-U/P 

-V/P 

aP 
- 

0 0 0 

VP 0 0 

0 VP 0 

-UP -VP P 
I 

0 0 0 

l/P 0 0 

0 UP 0 
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Appendix 3.B 

THREE-DIMENSIONAL IMPLICIT GIM CODE EQUATIONS 

Govering Equations 
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and where 

P = 
&= 
P= 

I-L= 
k= 

mass density U = x-component of velocity 

total energy w = z-component of velocity 

pressure V = y-component of velocity 

kinematic viscosity coefficient x = bulk viscosity coefficient 

thermal conductivity T = temperature 

XrY,zIt = space and time coordinates 

p = (y -l)p 1 (ideal gas law) 

Finite Difference Equations 

A 
P (I -At I I +a,A A+ Id *)(I-At Ay .)(I-At ) &UT= AU; 

iGi 
ui = U; t At 6Uy 

A Gn 

- ) AZ 

P --~(ItAtA~~‘*~aU:t’=AU~ I 

Untl 

where 

n = time level i = node number 

fXJntl i 
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and where - Ax ’ G’G *ay9Az are difference operators 

given by (for any property Q) 
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‘B4 = max 

x B5 = max 

x Cl = max 

A c2 = max 

k3 = max 

k4 = max 

Q5 = max 

v = max(p, X + W, k/cJ 
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4. TURBULENCE MODEL IMPLEMENTATION 

4.1 REVIEW 

The ability to compute actual time-dependent turbulent flow fields is 

beyond the range of current and foreseeable computer resources. It is im- 

possible to refine the computational mesh to the extent necessary to resolve 

the wide range of eddy length scales involved without exceeding computer 

speed and memory bounds. Such is also the case with any attempt to deter- 

mine the instantaneous behavior of the rapid turbulent fluctuations about the 

mean flowfield solution. As a result the effects of turbulence must be de- 

scribed by modeling. 

To avoid resolving every possible mode of turbulent flow, the first step 

in turbulence modeling is to time-average the Navier-Stokes equations. In 

this process the conserved variables are written as a sum of a time-average 

mean flow and a fluctuating part. Casting the Navier-Stokes equations in 

terms of these averaged variables results in a set of governing equations 

similar to the original set with some new terms referred to as the Reynolds 

stress and turbulent heat transfer terms. Rubesin and Rose (Ref. 4-l) use 

time-mass-averaged variables to arrive at a set of governing equations which 

are particularly useful in compressible flow calculations. 

The Reynolds stress and turbulent heat transfer terms (hereafter re- 

ferred to only as Reynolds stress terms) are now unknowns in the governing 

equations and closure of the system must be provided through empirical 

relationships or 11 turbulence models .I’ Marvin (Ref. 4-2) provides an excel- 

lent review of turbulence modeling in compressible flows. There are two 

major classes of turbulence models available. The first of these models 

takes advantage of the Boussinesq hypothesis which states that the Reynolds 

stress terms in the Navier-Stokes equations can be modeled as the product 
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of the phenomenological ‘teddy” viscosity and the appropriately averaged local 

velocity gradient. These models then depend only on local mean flow quan- 

tities and empirically determined constants. The second class involves 

models that use fundamental transport equations to obtain more directly the 

spatial variation of the Reynolds’ stress throughout the flow. These models 

relate the turbulent shear stress (turbulent eddy viscosity) to the turbulent 

kinetic energy and are called the TKE models. 

Eddy Viscosity Models: There are many algebraic eddy viscosity models 

available to directly relate the Reynolds stress terms to the mean flow condi- 

tions. One of the most widely used is that developed by Cebeci (Ref. 4-3). It 

is a two-layer model which employs a Prandtl-Van Driest mixing length formu- 

lation in the near-wall region and the Clauser wake formulation in the outer 

region (or in wakes). This model and, in general, most of the algebraic 

closures perform well for calculating attached turbulent boundary layers in 

zero or mild pressure gradients. 

The Cebeci-Smith model was modified by Shang and Hankey (Ref. 4-4) 

to include a relaxation’length for the eddy viscosity. This model was found 

to give good predictions in regions of flow separation under the influences of 

strong adverse pressure gradients. 

Another eddy viscosity model in wide use is that of Baldwin and Lomax 

(Ref. 4-5) This model was developed for use in two- and three-dimensional 

Navier-Stokes codes and is applicable to separated flows in shear layers, 

wakes and wall boundary layers. This model is similar to that of Cebeci 

but it avoids the necessity of determining the outer edge of the boundary layer 

(or wake) by employing an approximation to the Clauser formulation in the 

outer region. This approximation amounts to the use of a vorticity distribu- 

tion function rather than the boundary layer thickness to determine the length 

scales. 

Turbulent Kinetic Energy (TKE) Models: The modeling of turbulent 

kinetic energy in compressible turbulent shea.r flows is discussed in detail 
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in Ref. 4-2. In these models the governing equations are supplemented by 

additional transport equations for turbulent kinetic energy and the various 

Reynolds stresses (Ref. 4-3). For computational efficiency, the most widely 

used models add only one or two extra transport equations. These are com- 

monly referred to as one-equation and two-equation models. 

One -Equation Models - In its original form, the one-equation model 

involves the solution of the turbulent kinetic energy equations. The values 

for the constants involved in the method were obtained through correlation 

of a variety of experimental data (Ref. 4-6). However, the model did not in- 

corporate the compressibility corrections described in Ref. 4-7. This cor- 

rection involves the modification of the dissipation constant. The introduction 

of the compressibility correlation provides a radical improvement in the 

ability of the one-equation model to predict flowfield development at super- 

sonic Mach numbers. This corrected correlation is described in Ref. 4-8. 

Rubesin (Ref. 4-9) has also devised a one-equation model for compressible 

flows from an extension of Glushko’s (Ref. 4- 10) ,incompressible model. 

Two-Equation Models - There have been a number of two-equation tur- 

bulent kinetic energy models developed. The fundamental differences between 

the various two-equation models and the one-equation model just described 

are that in the two-equation models a transport equation is written for the 

turbulence energy dissipation length scale, (or equivalently, the turbulence 

energy dissipation rate) and the Prandtl-Kolmogorov relation is used to ob- 

tain the turbulent eddy viscosity. The most highly developed two-equation 

model is that given in Launder et al. (Ref. 4-11). The use of this so-called 

“k-e” model is advocated and described by Launder and Spalding (Ref. 4-12). 

However, this two-equation model does not include a compressibility cor- 

rection, and predictions made using this model for highly compressible flows 

are not accurate. Pan describes an extension of this model to three-dimensional 

steady compressible flows (Ref. 4- 13). 

In general, TKE models provide more flexibility and give better pre- 

dictions of turbulent flows than do the algebraic models. However, adjustments 
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of the empirical constants in these models are required depending on flow 

conditions. The user must weigh the increased accuracy of the TKE models 

against the increase in required computation time and storage in order to 

choose between the methods. 

4.2 MODELS CURRENTLY IN GIM 

At the time of this writing the GIM code user may choose between the 

following turbulence models: 

l The Baldwin-Lomax algebraic eddy viscosity model for 
elliptic and QP calculations in the presence of one wall. 

l The rtk-~” two-equation TKE model for two- and three- 
dimensional elliptic and QP calculations. 

The Algebraic Model: The eddy viscosity model presently in the code 

is a variation of the Baldwin-Lomax model (Ref. 4-5). The turbulence effects 

are modeled by an eddy viscosity coefficient pT which enters into the flow 

equations through a modified total viscosity: 

where the laminar viscosity pL can assume a constant value or be calculated 

from the temperature via Sutherland’s law. The thermal conductivity is deter- 

mined through the input of a laminar and turbulent Prandtl number (Pr and 

PrT’ respectively) as 

K/Cp = P/Pr + pT/PrT 

The eddy viscosity is given by a two-layer model: 

(pT)inner rlr 

” = 

C 

(I-lT)outer r>r C 

(4.2) 

(4.3) 
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The description of the formulae used to calculate the inner and outer solu- 

tions is given in Ref. 4-5 and will not be repeated here. The only variation 

of the model in the code from that in Ref. 4-5 is in the definition of r (called 

y in the reference). In the GIM code r is the distance to the node point of 

interest in the computational grid from the node point on the solid wall which 

lies along the row of nodes including the point of interest. The symbol r C 
denotes the least value of r for which the inner and outer viscosities are 

equal. Thus, the GIM code version and the model in Ref. 4-5 are equivalent 

if one set of grid lines is maintained perpendicular to the wall, i.e., orthog- 

onal grids. It is planned to extend the present model to multiple walls. 

The TKE Model: The differential equation model presently in the code 

is a time-dependent extension of that proposed by Pan (Ref. 4-13). This model 

requires the solution of two additional equations. The first one is for the 

turbulent kinetic energy 

--- 
k = + (u’2 + VI2 + w12) (4.4) 

2 where u1 , etc., are the mean square turbulent fluctuations of the velocity 

about the mean velocity profile. The other equation describes the transport 

of the rate of dissipation of turbulent kinetic energy, E. The variables k and 

E are related through an extension of the Prandtl-Kolmogorov relation for the 

turbulent eddy viscosity 

YT = CpP k2/e (4.5) 

where C 
I-1 

is an empirical constant. The governing equations for the flow field 

are given in Fig. 4-l. CEl and CE2 are empirical constants. This model is in 

the code and has been compiled but no test cases have been completed as of 

this writing. A few questions remain to be addressed on the use of this model. 

The exact treatment of the boundary conditions on k and E at solid walls is in 

question since the codes which use these models do not treat real solid walls 

but use extrapolated l’wall functions.” This boundary treatment has been known 
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to yield poor results in the near -wall region where the model predictions of 

the turbulent length scale, k 312 /E , vary dramatically from experimental 

results (Ref. 4- 14). The ability of the model to compute turbulence 

in the presence of pressure gradients strong enough to cause separation or 

in recirculating flow is in doubt. The greatest obstacle to proper boundary 

treatment at solid walls is a paucity of experimental information from which 

to determine the behavior of the dissipation at the wall. For compressible 

flows it is not known how much information about density fluctuations is 

obscured by mass-weighted averaging; nor, has the ability of models averaged 

in this way to compute flows with large density or pressure gradients been 

verified. 

The need for artificial damping to stabilize the time-iterative solution 

of these equations has also not been studied. The specific form of the damping 

terms needs to be derived. 

4.3 RESULTS OF COMPUTATION 

The two-dimensional spillage problem defined in Ref. 4.15 was used as 

a test case. 

The turbulent flow field over the leading edge of this 25-deg compression 

surface of the model inlet was calculated. Figure 4-2 shows the 840-node 

computational grid. The velocity vectors , pressure, and Mach contours are 

shown in Figs. 4-3, 4-4 and 4-5, respectively. 

The flow was initialized at freestream values everywhere except at the 

walls where a zero velocity condition was imposed. All features of the flow 

were then calculated by the GIM code. Convergence was assumed after 1500 

iterations when the sum of squares of the unsteady derivatives were decreasing 

by.less than 1 percent. The turbulent viscosity was determined with the Baldwin- 

Lomax turbulence model and the laminar viscosity was held constant. The fr.ee- 

stream Reynolds number per unit length was approximately 2 x 105. 

These results will be used to form the initial conditions for the calcula- 

tion of the remainder of the turbulent flow field. 
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Fig. 4-2 - Computational Grid for the Leading Edge of the Turbulent 
Spillage Problem 
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Fig. 4-4 - Spillage Problem - Leading Edge Adiabatic Walls 
(Turbulent) 
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(Turbulent) 

63 

I-- 



SECTION 4 REFERENCES 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

4.10 

4.11 

4.12 

4.13 

Rubesin, M. W., and W. C. Rose, ” The Turbulent Mean-Flow, Reynolds- 
Stress,and Heat-Flux Equations in Mass-Averaged Dependent Variables,” 
NASA TM-62248, March 1973. 

Marvin, J. G., “Turbulence Modeling for Compressible Flows,” NASA 
TM X-73, 188, January 1977. 

Cebeci, T., “Calculation of Compressible Turbulent Boundary Layers 
with Heat and Mass Transfer, ” AIAA Paper 70-74, Los Angeles, June 
1970. 

Shang, J. S., and W. L. Hankey, “Numerical Solution for Super sonic 
Turbulent Flow over a Compression Ramp,” AIAA J., Vol. 13, No. 10, 
October 1975, pp. 1368-1374. 

Baldwin, B. S., and H. Lomax, ” Thin Layer Approximation and Algebraic 
Model for Separated Turbulent Flow, ” AIAA Paper 78-257, Huntsville, 
Ala., January 1978. 

Ferri, A. et al., ” Theoretical and Experimental Investigation of Super - 
sonic Combustion,” ARL-62-467, Aerospace Research Laboratories, 
San Bernadino, Calif., September 1962. 

Harsha, P. T., and S. C. Lee, “Correlation Between Turbulent Shear 
Stress and Turbulent ISinetic Energy, ” AIAA J., Vol. 8, No. 8, August 
1970. 

Harsha, P. T., “A General Analysis of Free Turbulent Mixing,” AEDC 
TR-73-177, May 1974. 

Rubesin, M. W ., “A One- Equation Model of Turbulence for Use with the 
Compressible Navier-Stokes Equation ,‘I NASA TM X-73, 128, April 1976. 

Glushko, G. S., “Turbulent Boundary Layer on a Flat Plate in an Incom- 
pressible Fluid;’ Bull. Acad. Sci. USSR Mech., 1965, pp. 13-23. 

Launder, B. E. et al., “Prediction of Free Shear Flows - A Comparison 
of the Performance of Six Turbulence Models. Free Turbulent Shear 
Flows. V.olume l- Conference Proceedings, NASA SP-321, 
PP. 361-426 (1973). 

Launder, B . E., and D. B. Spalding, ” The Numerical Computation of 
Turbulent Flows,” Computer Methods in Applied Mechanics and Engi- 
neering, Vol. 3, 1974, pp. 264-289. 

Pan, Y. S., ” The Development of Three-Dimensional Partially Elliptic 
Flow Computer Program for Combustor Research;’ NASA CR-3057, 
Langlev Research Center. Hamnton, Va.. November 1978. 

64 



4.14 East, L. F., and W. G. Sawyer, I’ An Investigation of the Strut ture of 
11 Turbulent Boundary Layers, Paper 6; AGARD Conference Proceedings, 

1979, p. 271. 
4.15 Spradley, L. W., J. F. Stalnaker and A. W. Ratliff, “Hyperbolic/Parabolic 

Development for the GIM-STAR Code ,‘I NASA CR-3369, December 1980. 

65 





5. CHEMISTRY MODEL DEVELOPMENT 

The original GIM algorithms were developed and the code written for 

an ideal gas only. The need for computing chemically reacting flow fields 
for application to engine combustion problems necessitates the development 

and implementation of a reacting gas capability in GIM. Most of the work 
during this contract has been limited to equilibrium considerations, but some 

attention has been given to finite rate models. The equilibrium work is dis- 
cussed first (Section 5.1) followed by a general formulation of a finite rate 

scheme for GIM. 

5.1 EQUILIBRIUM CHEMISTRY 

The basic premise of chemical equilibrium treatment in flow fields is 

that the local reaction rates are much faster than the flow residence time. 

The consequence is that the reactions proceed to completion at each point 

within the flow field. It has been shown in Ref 5- 1 that for chemical equilibrium 

the thermochemistry computations can be uncoupled from the flowfield solu- 

tion. The thermochemistry data can then be communicated to the flowfield 

code via one of two methods. First, the flow state variables (P, p, T), 

thermodynamics (7, Mw) and species distribution can be generated a priori 

for an isentropic expansion process from a given stagnation condition and 

the results stored in tabular form for use via a table look-up procedure. 

Second, the chemical equilibrium properties can be computed as an integral 

part of the flowfield solution by using the equilibrium calculation code as a 

subprogram. In either case the results are the same. Depending upon the 

size of the system, i.e., number of species and reactions involved, it has 

been found that, in general, the uncoupled approach saves computer time. 

A third approach is to simplify the reaction model to a complete reaction 

application. The approach is now discussed. 
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5.1.1 Complete Reaction Model 

Adding additional species equations to the GIM code and tracking each 

of the species present increases both the storage and computer time used in 

performing calculations for a reacting flow situation. As a first step, an 

effective global species conservation equation is solved for the mass fraction 

of the hydrogen fuel. This fuel mass fraction is the sum of the hydrogen com- 

ponent over all species; it is assumed that the remainder of the element mass 

fractions are those of nitrogen and oxygen (again summed over all species) in 

the proportions found in air. This approach allows the use of the two-gas species 

equation already in the GIM code. 

In the one and two ideal gas versions of the GIM code presently used, the 

thermodynamic and transport properties of the fluid have been computed locally 

whenever needed. This approach is efficient in the use of computer memory; 

however, when considering more complex chemistry models, this procedure 

can become too costly in the use of computer time. For this reason, the 

logic of the GIM code has been changed to perform the thermodynamic and 

transport property calculations only once per time step in a new fluid properties 

subroutine. For the sake of consistency and ease of use, the fluid property 

calculations for the one and two ideal gas cases have also been included in this 

subroutine, with the choice of paths through the subroutine being determined by 

an input indicator. 

The complete reaction model used to describe hydrogen-air chemistry 

assumes that all of the hydrogen fuel or oxygen present goes completely into 

water, depending upon whether there is an excess of oxygen or fuel, respectively. 

Following Ref. 5-2, reaction is not permitted when the volume fraction of 

hydrogen in the mixture is less than a threshold level of 0.04. Only the four 

species HZ, 02, N2 and H20 are considered in the chemistry model des- 

cribed herein, and only when the amount of hydrogen present is less than the 

threshold Level will both H2 and O2 be present. The primary input to this 

phase of the complete reaction model is the mass fraction of hydrogen fuel 

(summed over all hydrogen-containing species) which is the dependent variable 

associated with the species equation. 
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After the species fractions have been determined, the temperature is 

found from the internal energy (obtained from the energy equation) using the 

enthalpy-temperature curve fits for the individual species from Ref. 5-3. 

Because these curve fits are higher order polynomials in temperature, an 

iterative procedure is required to do this. This iteration can be avoided as 

in Ref. 5-2 through the use of a quadratic equation to represent the enthalpy- 

temperature variation. This permits direct solution for temperature using 

the standard inversion procedure for quadratic equations. 

Knowing the composition, temperature, and density (from the continuity 

equation), the mixture mol.ecular weight can be obtained, and the pressure 

from the equation of state for a mixture of ideal gases. 

The transport properties are obtained by considering the fluid as an 

effective binary mixture for the purposes of computing a viscosity and thermal 

conductivity. Water, oxygen and nitrogen (H20, 02 and N2) are lumped as one 

effective species and hydrogen (HZ) is the second species. Actual values of 

the transport properties are based on data from Refs. 5-4 and 5-5. Wilke’s 

rule is used to obtain the mixture viscosity and Mason and Saxena’s relation 

for the mixture conductivity. These relations were taken from Ref. 5-6. The 

transport coefficients needed for the species equation are obtained from con- 

stant Prandtl number and Lewis number. 

Since the speed of sound value used at various places in the GIM code 

need not be rigorously precise, an approximate value is computed from the 

perfect gas expression using a value for the ratio of specific heats of 1.4 

and a gas constant, value obtained using the universal gas constant and the 

local mixture molecular weight. Frozen specific heat values are obtained 

using the curve fits in Ref. 5-2. 

The previous discussion has described how the complete reaction model 

composition and the associated thermodynamic and transport property data 

are computed. As noted earlier, the one and two ideal gas case fluid property 
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calculations have also been consolidated into the new fluid properties sub- 

routine. These ideal gas properties are computed as was done previously 

in the GIM code and are not described here. 

Initial checkout of the logic changes involved in implementing the fluid 

properties subroutine has been performed using a previously run one-ideal 

gas case, essentially reproducing the results obtained earlier. The hydrogen- 

air capability is being tested by running a flat-plate slot-injection test case 

(Ref. 5-7 as given in Ref. 5-2). Initially, results will be for non-reacting flow 

(obtained by setting the hydrogen fraction threshold level required for reaction 

to a value greater than one), and then for a reacting flow following the com- 

plete reaction model. 

5.1.2 Arbitrary Gas Full Equilibrium Model 

The mathematical formulation of a full chemical equilibrium calculation 

is well documented (Ref. 5-3) and a computer code is available to provide thermo- 

chemistry information. The computer code is fast computationally, reliable and 

accurate. Its output has been made compatible with our other flow field codes 

at Lockheed and are communicated to the codes via tabulated data. 

In the flow solution, the governing equations are cast in terms of inde- 

pendent variables such as velocity, entropy and total enthalpy. For isoener- 

getic isentropic flow there is no change in either the entropy or total enthalpy 

level during a flow field expansion process. Computationally, a combustion 

calculation (specified reactant formulation and pressure-temperature 

conditions) locates the appropriate isentrope where the flow field expansion is 

initiated (Fig. 5- 1). Succeeding points on the isentrope are obtained by 

specifying one state variable (normally pressure) and the remaining properties 

computed from chemical equilibrium considerations and isentropic expansion 

calculations from reference conditions. 

Shock waves calculated in the discrete fashion are easily treated since 

the shock wave represents a discontinuity in the flow across which there is 

an increase in the entropy level as a result of loss in local total pressure. 
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This means simply that the expansion along an isentrope changes to a new isen- 

trope (Fig. 5- 1) when the streamline of interest passes through a shock wave. 

To locate this isentrope, the change in entropy across the shock is computed 

from the shock relations. 

Chemical equilibrium is treated in the flowfield codes by generating 

tables of isentropic expansions a priori from specified reference conditions, 

where non-isentropic effects are obtained by expanding the isentropic relations. 

Most practical flow fields which are reacting have a non-constant energy 

field. This is treated in our equilibrium code as another parameter in a table 

look-up. An a priori knowledge of the range of energy distributions can be 

used to set up another entry in the table. This is commonly referred to as 

Oxidizer/Fuel (O/F) ratio (see Fig. 5-2). Utilization of the equilibrium 

routine then proceeds as described above. 

Shock capturing finite difference schemes are formulated by casting the 

set of governing partial equations in “conservative form” and then constructing 

the difference equation such that the conservative nature of the governing equa- 

tions is maintained. However, it is necessary to add artificial viscosity to the 

solution in the vicinity of shockwave for numerical stability. If too much arti- 

ficial viscosity is induced, the damping is too great and the jump conditions 

across the shock are computed incorrectly. Consequently, obtaining the 

correct thermodynamic properties through the shock depends on correctly 

constructing the shock (i.e., computing the correct “jump” conditions across 

the shock). In any event, the chemical equilibrium properties are obtained 

as discussed above. 

5.2 FINITE RATE MODEL DEVELOPMENT 

In flow problems where the gas may be considered in equilibrium 

(chemical and thermodynamic) at every point, two parameters are sufficient 

to define any of the other thermodynamic variables, either by assuming a 

perfect gas or by utilizing the results of chemical equilibrium calculations 

of the gases involved. If the gases cannot be considered to be in equilibrium, 
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a point-by-point evaluation of its composition via integrating the individual 

species continuity equations is required. This subsection addresses a 

generalized procedure used to perform such calculations for an inviscid 

analysis This general procedure with addition of viscous terms will be 

used in the GIM code. 

A detailed description of the rate processes that occur in reacting 

flows requires that a myriad of mechanisms be considered to include all 

the possible chemical reactions of dissociation, formation, recombination. 

All of these, however, can be treated with a very general formalism. In 
the form usually quoted in chemical kinetics (Ref. 5-8) the phenomenological 

law of mass action states that the rate of a reaction is proportional to the 

product of the 

of the form 

concentrations of the reactants. Thus, for a general reaction 

the net rate of production wi for any participating species for which the 

stoichiometric coefficients vf and vi’ are not equal can then be written as 

N N 

c vf Ai Z c vf’ Ai 

i=l i=l 

N 
t;l = kf n (Ci,yL-k 

i=l 
b i~I (‘i) “’ 

(J.1) 

(5.J) 

where Ci is the species concentration defined as C i = p Fi with p being the 

density and Fi being the species mol/mass ratio, respectively. Assuming 

small deviations from equilibrium, the forward and backward reaction rate 

constants, kf and kb, respectively, can be related to the concentration equi- 

librium constant and to the pressure equilibrium constant as follows: 

kf 
c cvy - vy 

kb 
=K C 

= K ( s,T)i=l 
P (5.3) 
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The significance of the pressure equilibrium constant K is that it can be 
P 

easily evaluated for any reaction using tabulated values of Kf the equilibrium 

constant for formation from the elements. Values of Kf are commonly tabu- 

lated in conjunction with specific heats, entropies and enthalpies as a function 

of temperature, and are available in general for most species. An equally 

convenient method exists for determining K 
P 

from the change of free energy 

accompanying the reaction, i.e., 

K 
P 

= exp(-AG/ 3 T) (5.4). 

where AG is the change in free energy during the reaction process. Free 

energy values are also available for most species in tabular form. This is 

the method most commonly used to compute K 
P’ 

Using Eq. (5.3) to eliminate the backward rate constant from Eq. (5.2) 

the general production rate equation can be written as 
N 

c i=l (vf’ - v;) 
. 

W = kf n” ,,i,ui _ ( 3 T) K 
i=l P 

(5.51, 

Finally, the net rate of production for any species participating in the 

reaction, either as a reactant or as a reaction product, is then given by 

. 
W. 1 = (vi’ - vi, 4 (5.6) 

Since most reaction systems involve a large number of simultaneous 

reactions, the net rate of production of species i usually equals a sum of 

terms. Thus, for an arbitrary number of M simultaneous reactions, all 

involving species i , 
M 

. 
w. = 

1 c x6 i, k k = l,...,M (5.7) 
k=l 
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where & i 
f 

k denotes the net rate of production of species i due to reaction K 

only. 

For reasons of computational speed and efficiency, a computer program 

can contain explicit expressions, as obtained from Eq. (5.5 ), for the most 

commonly encountered reaction mechanisms. Twelve types of reaction 

mechanisms are generally considered as possible contributors to the cal- 

culation of the net rate of production, &. : 
1 

Reaction type 

(1, 7) A+B .- C +D - 
(238) A+B+M g CtM 

(3, 9) A tB - CtDtE 7 
(4, 10) A tB ---L C 7 
(5, 11) AtM 2 CtDtM 7 
(6, 12) AtM \ CtM - 

(5.8) 

Reaction types (7) through (12) correspond to reaction types (1) through 

(6), but proceed in the forward direction only. 

To reduce roundoff and truncation errors, the forward and backward 

rates for each reaction are computed separately. All contributions to the 

molar rate of production of a given species are then computed and added 

algebraically to form matrix coefficients. Since reaction types (7) through 

(12) proceed in the forward direction only, the second term on the right- 

hand side of Eq. (5.5) is disregarded in calculating the contributions to the 

coefficient matrix. 

In reactions (2), (5) and (6), as well as in (8), (11) and (12), M denotes 

a third body species which can be specified. For these reactions the situation 

often occurs where for various third bodies the respective rate constants 

differ only by a constant multiplier. These multipliers can be considered 

as third body efficiencies or weighting factors. If such a case is encountered, 
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the third body species mole mass ratio FM becomes effectively a fictitious 

mole mass ratio, consisting of the weighted sum over all those species having 

a nonzero weighting factor, i.e., 

FM = c fj, FM 
i 

(5.9) 

where fi are the weighting factors. 

The forward rate constant, kf, is generally a function of temperature. 

It is most often expressed in Arrhenius form. Again, for speed and efficiency 

in computation, the rate constants are divided into five types: 

Rate Constant Type 

(1) 
(2) 

(3) 

kf =A 

kf 
= AT-N 

kf = A exp(B/ 3 T) (5.10) 

(4) kf 
= AT-N exp(B/ 32 T) 

(5) kf 
= AT-N exp (B/ .Y TM) 

The equations presented in this section provide a very general formalism 

for the evaluation of various rate processes. The specification of particular 

systems and associated rate constants is left to the program user to provide 

input data. 

Considering now the general species continuity equation 

p<* vci =t; (5.11) 

and making use of the foregoing discussion of the rate process we now proceed 

to describe a calculational technique for determining the individual species 

composition on a point-by-point basis. The description of this process is 

substantially simplified if Eq. (5.5) is specialized to a particular reaction 

type, say number (7) from Eq.(5.8) which is a one-way, two-body reaction. 
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AtBdCtD (5.12) 

the net production rate for this process is 

. 2 w=-kfp FAFB 

and the species continuity equation for species B then becomes 

@&VFB=-kfp2FAFB 

(5,13) 

(5.14) 

which along streamlines becomes 

aFB 
PS as = -kfP 

2 
FA FB (5.15). 

This equation can readily be solved using finite difference techniques 

employing explicit relationships, such as Euler or more sophisticated schemes, 

such as Predictor-Corrector. The step size for integrating this equation however 

is severely limited by stability criteria. It can be seen from Eq. (5,lS) that the 

rate of change of a species along the streamline becomes increasingly larger 

as the flow speed is slowed, the density increased, or for fast reaction rates. 

In many flow problems, combinations of slow speeds, high densities and 

fast reaction rates (i.e., quasi-equilibrium) are quite common and integration 

step sizes so small (i.e., < 10 
-8 meters) are encountered that the solution 

becomes impractical in terms of computation time. 

For this reason, the technique described in Ref. 5-9, based on a 

linearization of the production rates, is a good choice. Writing Eq. (5.15) 

in finite difference form over a streamline step from station n to n+l, 

FB 
kPSP 

ntl = FB -- n q FA FBntl 
(5.16) 

ntl 

And evaluating all the species concentrations at the downstream point results 

in a set of simultaneous nonlinear algebraic equations. In order to solve 
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these equations, we must then linearize the term FA,tl FB,tl which is 

accomplished following Ref. 5-9, By expanding in terms of values at station 
n along with the increments over n to ntl and neglecting products which are 

of second order, we can get the following expression using algebra. 

=Antl FBntl = FA FB n ntl + FBn FA (5.17) 
ntl - FA nFBn 

Equation (5.16) can now be written in its linearized form. Let C = AS kf p/q 

and 

FB ntl 
= FB -CFA FB tFBFA -FAFB 

n [ n n-l-l n n-l-1 n n 1 
(5.18) 

FAntl = FA - ’ n ntl 
FBn +FB FAn -FA 

ntl nFBn 1 
Equation (S-18) can then be expressed in terms of a set of unknowns and 

calculable coefficients, C. Rewriting these we obtain 

FB ) 
ntl 

= Q, - C FA 
n 

(FB 
n ntl 

1 - C Fg (FA 
n ntl 

(5.19) 

=A ntl 
= QA - C Fg 

n 
(FA 

n ntl 
) - C FA (FB 1 

n ntl 
where 

Qi = Fi t C Fi Fj 
n n n n 

(5.20) 

FA (1 + c FB ) + (c FA ) FB 
n-H 

= QA 
n n ntl n 

(5.21) 

FAntl 
(c FB ) f (1 + c FA ) FB = QB 

n n ntl n 
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A matrix can now be formed using totally known information. 

’ FA n n 

I 
l+ C FAn 

The algebraic equations [A] [X] = [B] can then be solved for the unknown 

compositions FA ’ FB via an elimination technique. Although consuming 
ntl ntl 

more time per integration step than an explicit formulation, the implicit tech- 

nique employed her’e is unconditionally stable permitting much larger step sizes. 

5.3 RECOMMENDATIONS 

Based on the development during the past year’s work, the following 

recommendations are offered. 

The I1 complete reaction” equilibrium model should be 
checked out for hydrogen-air mixing in a duct. 

The full, arbitrary gas, equilibrium model discussed in 
Section 5.1 should be completed and a solution compared 
to the complete reaction case. 

Parallel to item 2 above, the full formal finite rate model 
should be coded in GIM. 

A global finite rate system should be synthesized for 
hydrogen air to provide input for checkout of the finite 
rate coding. Comparison with the equilibrium cases 
should then be made. 
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6. INTERACTIVE GIM CODE INPUT PROGRAM - RUNGIM 

6.1 INTRODUCTION 

RUNGIM is an interactive program package designed to automate the 

preparation of GIM code program input and to effectively eliminate a 

percentage of the mistakes made by the novice as well as the experienced 

user. The prevention of gross errors will result .in great savings of both 

engineering hours and computer time. In addition, the use of RUNGIM will 

reduce the required training period for a new user, make the GIM code easier 

to use, and significantly decrease the overall time required for setting up a 

given p.r oblem. 

RUNGIM combines the interactive features of FORTRAN Extended (FTN) 

Version 4.7 and Nos. 1.3 CYBER Controls Language (CCL) to efficiently auto- 

mate the GIM code input procedures. One of the most important of these 

features is the acceptance of list-directed input from a remote terminal. 

This type of input accepts integer, floating point, exponential, or alphanumeric 

data if separated by a comma or space. Thus the physical portion of the input 

phase becomes a function of user convenience and is quick, easy, and relatively 

free of possible error. To facilitate this type of input, RUNGIM is self-directing 

and prompts the user for .input data. The lrprompt” supplies the user with 

minimal necessary information about the input and then invites a response. 

RUNGIM contains appropriate default values for those inputs which have a 

frequently assumed value and checks user -supplied numerical inputs for 

proper format (i.e., integer or real) and range. If the user enters an improper 

input value or attempts a default where none is allowed, RUNGIM responds 

with appropriate messages and continues to prompt the user until an appropriate 

response is entered. Since many GIM code runs involve only minor changes 

in previously submitted input data, RUNGIM allows the user the access and 

XEDIT previously created data files. Finally, RUNGIM provides the user 
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with the ability to interrupt execution of the interactive program at any point 

by entering a special “abort code.” The user is then able to resume execution 

at the point of interruption, restart at the beginning, or terminate execution 

completely. 

There are basically three types of data that must be generated for use 

in a GIM code run. These three types are job control cards (runstreams), 

UPDATE directives, and the actual program input data. Control card types 

are generally independent of the problem under consideration; therefore, 

RUNGIM can supply all necessary control card information except for account 

and charge numbers, core storage and run time requirements, and file name 

designations. By limiting user responsibility for knowledge of the job control 

language to such easily understood information most of the control card errors, 

especially those committed by novice users, are eliminated. 

Since modification of the GIM code is often necessary to accommodate 

special applications, RUNGIM allows the user to supply directives to the 

UPDATE processor from the remote terminal or from previously built files. 

This requires some user knowledge of both the UPDATE processor and the 

GIM code but provides a convenient means of assembling the UPDATE directives. 

The primary input to the GIM code is, of tour se, the program input data 

and this is quite naturally the greatest source of potential error for the user. 

RUNGIM prevents many of these errors by ensuring that the proper .input loops 

are chosen and explained at each logical step according to the options requested. 

This eliminates the omission of data or improperly placed data. The use of 

the free formatted input scheme, which allows RUNGIM to properly format 

the information on a data file, eliminates the danger of badly formatted data 

stopping the job or producing erroneous results. 
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6.2 RUNGIM DETAILS AND FEATURES 

RUNGIM actually consists of seven separate programs which are exe- 

cuted interactively under the control of the main program, as illustrated in 

Fig. 6- 1. These seven individual programs, GEOM, MATRIX, INTEG, GIMPLT, 

UPDATE, DYNDIM, and RNSTRM, perform the following tasks: 

GEOM - supplies input data for the GIM code GEOM 
modules; 

MATRIX - 

INTEG - 

supplies ,input data for the GIM code MATRIX 
modules (not yet operational); 

supplies .input data for the GIM code INTEG 
modules 

GIMPLT - supplies input data for the GIM code plotting 
program; (not yet operational) 

UPDATE - supplies modification directives to the CDC 
UPDATE processor; 

DYNDIM - supplies input data for the GIM code dynamic 
dimensioning programs; and 

RNSTRM - supplies the control cards required to execute 
any GIM code module on the NOS/CY203 computers. 

The basic layout of the individual programs is the same for each one 

and is illustrated for GEOM in Fig. 6-2. Each program has the capability 

of using previously created data files or interactively creating new one(s). 

The .interactive FORTRAN portion of each program can supply the control 

cards required to invoke the XEDIT’er and/or save the data files as permanent 

files. Note that the user can interrupt the execution of each program by enter- 

ing an “abort code” in response to any prompt. The user then has the option 

of resuming execution at the point of interruption, restarting the program, or 

terminating execution of that particular program. This feature could be ex- 

panded to allow branching to various points within a program during interrupt 

processing. 
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Fig. 6-2 - Schematic of GEOM Interactive Module 
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The various features of RUNGIM are illustrated in the following examples 

of actual RUNGIM input and output. The program begins by displaying a banner 

message and prompts for display of instructions and execution code: 

YOU WILL BE PROllPTED FOR INFORMATION REQUIRED TO CRECITE OR FlCCESS 
VARIOUS DCITA FILES AND THE RUNSTREfM’l 

DO YOU WISH TO SEE INSTRUCTIONS BEFORE PROCEEDING (DEFAULT - NO) 
? 

SELECT RUNCIfl dODULES BY THE FOLLOWING CODE(S): 

GEOfl - 1 f'lATRIX - 2 INTEG - 3 GIflPLT - 4 
UPDATE = 5 DYNDIN = 6 RNSTRM l 7 

ENTER MODULE CODE(S), ONE CODE~COLUMN 
3 1567 

YOU HAVE SELECTED THE FOLLOWING MODULES: 

GEON UPDATE DYNDIH RNSTRM 

ENTER GO TO CONTINUE (DEFAULT - RESELECT NODULES) 
? GO 

If the user had responsed “YES “to the prompt for instructions, then RUNGIM 

would have displayed a description of the program and ,in.structions for its use 

( see Section 3.2). In this particular case, the user has selected the GEOM, 

UPDATE, DYNDIM, and RNSTRM modules. RUNGIM begins execution with 

the GEOM module: 

------------------------------------------------------------------o-= 
tt NOW ENTERING GEOM NODULE X): 

YOU flhY EITHER ACCESS c)N EXISTING (OLD) GEOMETRY DC)TA FILE, 
OR CRECITE A NEW ONE 
ENTER OLD OR NEW (DEFAULT - NEW) 

? 
ENTER GEOflETRY DCSTA FILE NClME (DEFAULT l STRINP) 

3 GEONDAT 
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The user has selected creation of a new geometry input data file to be 

named ‘I GEOMDA T .I’ GEOM then begins to prompt for various ,input items: 

XX BEGINNING CRECltION OF GEOMETRY DFITCI FILE GEOflDAt Xt 
YOU.UILL BE PRONPTED FOR INPUT 

ENTER HERDER -- CINY ALPHANlWERIC INFORMfiTION NAY BE USED (DEFAULT - BLANK) 
3 GEOHETRY DCITCI -- FILE GEOllDAT 

SPECIFY NURBER OF ZONES INTO UHICH THE FULL DOtWIN IS DIVIDED 
ENTER NZONES -- NO LIHIT (DEFCIULT - 1) 

32 
SPEC-IFY PROBLEH DIflENSIONALITY -- lD, 2D, OR 3D 

ENTER 1, 2, OR 3 (DEFCIULT - 2 1 
? 

SPECIFY ONE-STEP OR TUO-STEP TItlE INTEGRATION SCHEME 
ENTER 1 OR 2 (DEFAULT - 2) 

? 
SPECIFY GENERhTION OF BOTH GRID AND FINITE DIFFERENCE flATRICES (8) 
OR GRID GENERflTION ONLY (1) 

ENTER 9 OR 1 (DEFCIULT - 0) 
3 

SPECIFY DO NOT I’MTE ZONES (01 OR NfiTE ZONES (1) 
ENTER 0 OR 1 (DEFlSULT = 1) 

3 
SPECIFY ELLIPTIC RUN (0) OR QP RUN(l) 

ENTER 8 OR 1 (DEFAULT - 0) 
3 

SPECIFY NO DEBUG OUTPUT (0) OR PRINT DEBUG OUTPUT (1) 
ENTER 0 OR 1 (DEFAULT - 8) 

P 
SPECIFY NO PRINTOUT OF EC)CH ELEHENT MATRIX (0) 
OR PRINT EVERY NTH ELEI’IENT MATRIX (N) 

ENTER 9 OR N (DEFCIULT l 8) 
? 

SPECIFY GRID POINT PRINTOUT FOR BOUNDARY NODES ONLY (8) 
OR FOR EVERY NTH NODE (NJ 

ENTER 8 OR N (DEFCIULT = 0) 
9 

Note the extensive use of defaults for input items with CO~IIXI nly assumed 

values. This is further illustrated below: 
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SPECIFY FORWARD (F) OR BACKUARD (B) FINITE DIFFERENCES 
FOR EACH TINE STEP AND EClCH COORDINATE DIRECTION 

ENTER F OR B FOR: 
STEP 1 -- X DIRECTION (DEFAULT - F) 

? 
STEP 1 -- Y DIRECTION (DEF'AULT - F) 

? 
STEP 2 -- X DIRECTION (DEFAULT = B) 

? 
STEP 2 -- Y DIRECTION (DEFAULT = B) 

? 

BEGIN INPUT DATA FOR ZONE 1 

SPECIFY NUMBER OF SECTIONS WITHIN ZONE 1 
ENTER NSECTS -- NO LIFIIT (DEFAULT - 1) 

? 
SPECIFY NUflBER OF SEGflENTS IN EDGE 1 

ENTER NSEGS -- 1TOS (DEFMLT = 1) 
? 

SPECIFY EDGE SHAPE FUNCTION FOR EDGE 1 
USE THE FOLLOWING CODES: 

LINEfiR 
CIRCULAR ARC : ; 

TRIG FUNCTION 
OF X - 5 

CONIC SECTION = 3 TRIG FUNCTION 
HELICAL CIRC l 4 OF THETA =6 

SPECIAL FUNCTION = 7 
ENTER NSHAPE -- iTO (DEFAULT-11 

? 
SPECIFY NUMBER OF SEGNENTS IN EDGE 2 

ENTER NSEGS -- it0 5 (DEFAULT = 11 
3 
SPECIFY EDGE SHAPE FUNCTION FOR EDGE 2 

ENTER NSHAPE -- 1 TO 7 (DEFCIULT - 1) 
?2 

SPECIFY NWIBER OF SEGNENTS IN EDGE 3 
ENTER NSEGS -- 1705 (DEFAULT - 1) 

? 
SPECIFY EDGE SHAPE FUNCTION FOR EDGE 3 

ENTER NSHAPE -- lTO7 (DEFAULT-11 
? 

SPECIFY NUNBER OF SEGMENTS IN EDGE 4 
ENTER NSEGS -- 1TOS (DEFCIULT - 1) 

? 
SPECIFY EDGE SHAPE FUNCTION FOR EDGE 4 

ENTER NSHAPE -- lTO7 (DEFAULT=11 
?2 
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Some input prompts display tables of appropriate values for the initial 

prompt only; subsequent prompts for the same input do not display the table. 

The edge shape function prompt shown above and the boundary condition indi- 

cator prompt shown below are examples of this “table on first prompt” pro- 

cedur e. 

SPECIFY BOUNDARY CONDITION INDIChTOR FOR EDGE 1 
USE THE FOLLOUING CODES8 

CONS’MNT NODES = 0 FREE-SLIP/ 
AXIS NODES -1 TANGENCY 
NO-SLIP/STAG- SPECIAL CASE : Z-7 

NATION NODES = 2 ONE-SIDED 
CORNER NODES DIFFERENCES - 8 

II;T:RIOR NODES - 9 
ENTER IBWL -- @TO9 (DEFAULT-9) 

Subsequent prompts for NSHAPE and IBWL will not display the table of values 

in order to expedite the input process. 

The following sequence illustrates the program’s ability to respond to 

improper input: 

SPECIFY NUIIBER OF NODES IN THE ETA1 DIRECTION 
ENTER NNOD -- 2 TO 100 (NO DEFAULT) 

? 
NO DEFAULT FOR NNOD 
SPECIFY NUIIBER OF NODES IN THE ETA1 DIRECTION 

ENTER NNOD -- 2 TO 100 (NO DEFMLT) 
?0 

INPUT ERROR -- NNOD 
PLEASE OBSERUEZ 2 .LE. NNOD .LE. 100 
SPECIFY NUNBER OF NODES IN THE ETA1 DIRECTION 

ENTER NNOD -- 2 TO 100 (NO DEFMJLT) 
? 99.9s 

99. < ERROR, RETYPE RECORD AT THIS FIELD 
3 99 
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At the first request for the number of nodes (NNOD), the user attempts to 

default. GEOM responds by indicating that there is no default for NNOD and 

repeats the prompt. This time the user enters an illegal value (0). GEOM 

indicates an error, displays proper bounds for NNOD, and repeats the prompt. 

The user next enters a value of improper format (real value instead of the 

integer value implied by NNOD). Again GEOM indicates the error and re- 

prompts. This time the user enters a legal value in the format consistent 

with the input variable and the program continues. 

The virtues of the list-directed input mode are illustrated below where 

several values are requested simultaneously: 

INPUT POINT COORDINATES, FLOU ANGLES, CIND SEGMENT EXTREMLS (IF ANY) 
OBSERVE THE FOLLOIJING SEQUENCE FOR 

COORDINATES8 
PTl - X COORDINATE OF POINT 1 
PT2 l Y COORDINATE OF POINT 1 
PT3 - 2 COORDINATE OF POINT 1 
PT4 - 
PTS - 

FLOU ANGLE IN THE X-Y PLANE AT POINT 1 
FLOW ANGLE IN THE X-Z PLANE AT POINT 1 
ETC., FOR EACH POINT 

INPUT COORDINATES OF POINT I 
ENTER PT ARRAY FOR POINT 1 (5 VALUES/LINE) 

? 0.5 0.0 0.0 0.0 0.0 
INPUT COORDINATES OF POINT 2 
ENTER PT ARRClY FOR POINT 2 (5 VALUES/LINE) 

? 1.0 0.0 0.0 0.0 0.0 

Here several values are input on the same line without regard to column loca- 

tion. Either blanks or commas may be used to separate values. Default, 

range, and format checking and error processing are ,invoked for each value. 

GEOM continues prompting for and accepting input data for the grid 

generation program, executing all of the loops required to create a complete 

input data file. The beginning of each major loop in the program is indicated 

so that the user knows precisely what portion of the geometry the subsequent 

input describes: 
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BEGIN INPUT DATA FOR ZONE 2 
SPECIFY NUtiBER OF SECTIONS WITHIN ZONE 
ENTER NSECTS -- 

2 
? 

NO LINIT (DEFCIULT - 1) 
SPECIFY NUf'lBER, OF SEGmENTS IN EDGE I 
ENTER NSEGS -- 

3 
1 TO 5 (DEFAULT - 1) 

The next example illustrates how GEOM can access an existing geom- 

etry ,input data file and then edit it via XEDIT. 

tX NOW ENTERING GEOM MODULE XX 

YOU MAY EITHER ACCESS AN EXISTING (OLD) GEOPIETRY DATA FILE, 
OR CREATE A NEW ONE 
ENTER OLD OR NEU (DEFAULT - NEW) 

? OLD 
ENTER.GEOt’lETRY DATA FILE NMEAJSER NUtlBER (DEFAULT - */LOGIN NUtlBER) 

? GEONDAT 
DO YOU WISH TO XEDIT FILE GEOfiDAT (DEFAULT l NO) 

? YES 
DO YOU WISH TO SAVE FILE GEONDAT (DEFAULT * NO) 

? 

PREPARE TO XEDIT FILE GEOflDC)T 
XEDIT 2.1.7 
?? PX 
2-D SUPERSONIC SOURCE FLOU CASE -- CI TEST FOR RUNGIl'l 

: : 2 1 0 1 

F F B B 

: 1 
4 ii 

1 
: 

11 11 ii 0 : 8 
1 

ii:8 ::: ::: 8:: 
.5 

.965k ii:: %:% 2: 2: 
.2S882 

.48296 .12941 ::: E: ::: 
/EOR 
END OF FILE 
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Here the data file can be modified using XEDIT to affect any changes desired. 

After editing, the file could be saved; however, in this instance the user relied 

on the default “NO SAVE?’ option so that the file will remain as a local file only. 

The interrupt capability of RUNGIM is illustrated in the next example. 

After several prompts, the user decides that he really wanted to use an existing 

data file instead of creating a new one. In response to the next prompt, the 

user enters the “abort code” (-999 in this version): 

;x1: NOU ENTERING GEOR tiODULE t): 

YOU MY EITHER ACCESS AN EXISTING (OLD) GEOPIETRY DATA FILE, 
OR CREATE A NEU ONE 
ENTER OLD OR NEU (DEFAULT - NEW) 

? 
ENTER GEOMETRY DATh FILE NAHE (DEFAULT - STRINP) 

? GEOMDC)T 

tt BEGINNING CREATION OF GEORETRY .DfiTA FILE GEOPlD~T t): 
YOU UILL BE PROflPTED FOR INPUT 

ENTER HE(IDER -- ANY ALPHANWIERIC INFORNATION NFIY BE USED (DEFMJLT - BLCINK: 
3 I HWE MADE A t?fSTAKE -- I REhLLY WANT TO USE hN OLD FILE 

SPECIFY NUNBER OF ZONES INTO WHICH THE FULL DORIEIIN IS DIVIDED 
ENTER NZONES -- NO LIMIT (DEFAULT l 1) 

? -999 

XX EXECUTION INTERRUPTED -- RODULE CEO/l tX 
YOU MY CHOOSE TO: (1) CONTINUE EXECUTION OF GEOH 

(2) RESTART EXECUTION OF GEOfl 
(3) TERNINCITE EXECUTION OF GEOR 

ENTER 1, 2, OR 3 
?2 

XX NOU ENTERING GEOfl NODULE XX 

YOU MY EITHER ACCESS AN EXISTING (OLD) GEOIIETRY DATEl FILE, 
OR CREATE CI NEU ONE 
ENTER OLD OR NEW (DEFCIULT = NEW) 

3 
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GEOM responds by interrupting execution and giving the user several options, 
. I.e., continuing execution, restarting, or terminating the program. The user 

selects a restart and the program restarts at the beginning of GEOM. 

All of the preceding examples have illustrated the GEOM program. 

However, the others are similar in procedures and features though they per- 

form different tasks. Several examples are given on the following pages to 

demonstrate the features and capabilities of the various RUNGIM modules. 

The sample problem used in these examples is the two-dimensional super- 

sonic source flow case of Ref. 1 (Section 8.1, Ref. 1). 

6.3 RUNGIM EXAMPLES 

6.3.1 Access and Execution 

The RUNGIM program package is available to any remote terminal user 

and may be accessed and executed using the following commands (in batch mode): 

4ET(RUNGIWUN-750978C) 

/RUNGIPl. 

6.3.2 RUNGIM Instructions 

The following are the instructions issued by RUNGIM ,if requested by the 

user: 
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/RUNGIrl. 

YOU WILL BE PROMPTED FOR INFORMATION REQUIRED TO CREATE OR ACCESS 
VARIOUS DATA FILES AND THE RUNSTREM 

DO YOU WISH TO SEE INSTRUCTIONS BEFORE PROCEEDING (DEFAULT - NO) 
? YES 

PLEASE SELECT AN ITEN FROH THE FOLLOWING lIENUt 

;: 
3. 

2: 
6. 

87: 

1:: 

GENERAL DESCRIPTION OF RUNGIII 
CATALOG OF RUNGIM f'lODULES 
FREE-FORM7 INPUT DESCRIPTION 
ERROR PROCESSING (ABORT MODE) 
RUNGIN DEFAULTS 
COMPATIBILITY WITH CURRENT GIII CODE DECKS 
KNOWN ‘BUGS’ IN RUNGIN 
SUGGESTIONS AND CONflENTS 
ALL OF THE ABOVE 
RETURN TO RUNGIR 

ENTER ITEM NUIIBER (DEFAULT - 10, 
39 
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GENERAL DESCRIPTION OF RUNGIll 

RUNGIM IS A COLLECTION OF FORTRCIN PROGRWIS AND CCL PROCEDURES 
WHICH PERRIT THE USER TO INTERACTIVELY CRECITE INPUT DATA FILES 
AND RUNSTREARS FOR THE VARIOUS GIR CODE RODULES. RUNGIN QUERIES 
THE USER FOR INPUT DATA VIA SELF-EXPLANhTORY PRORPTS. hS THE USER 
ENTERS THE DFITA, RUNGIR ARRANGES THE DATA IN THE PROPER SEQUENCE 
AND FORRAT AND WRITES IT OUT ONTO USER-NAflED FILES. ALL USER- 
SUPPLIED INPUT IS SCANNED FOR PROPER FORRAT (INTEGER, REAL, OR 
ALPHANUflERIC) AND RFINGEj THE USER IS NOTIFIED OF ERRORS FIND 
INVITED TO REENTER CORRECT DATA. FlFTER CREATION OF A DATA FILE 
OR RUNSTREAR, THE USER HAS THE OPTION OF 'XEDIT'ING THE FILE 
hND/OR ‘SCIUE’ING IT. 

ENTER CARRIAGE RETURN TO CONTINUE 
? 

CATCILOG OF RUNGIR UODULES 

RUNGIR HClS THE FOLLOUING RODULESt 

1. GEOM -- CREATES INPUT DCITA FILE FOR GEORETRY NODULES 
2. NATRIX -- CREATES INPUT DATA FILE FOR NFlTRIX MODULES (NA) 
3. INTEG -- CRE.CITES INPUT DATA FILE FOR INTEGRATOR RODULES 
4. GIRPLT -- CREATES INPUT DClTA FILE FOR PLOT NODULES (NCI) 
5. UPDATE -- CREATES DIRECTIVE FILE FOR THE UPDATE PROCESSOR 
6. DYNDIR -- CREATES INPUT DATA FILE FOR THE DYNANIC DIRENSIONERS 
7. RNSTRR -- CREATES RUNSTREWS FOR ALL GIN CODE MODULES 

ENTER ChRRIFIGE RETURN TO-CONTINUE 
7 

97 



FREE-FORflAT INPUT DESCRIPTION 

RUNGIM USES FREE-FORRAT (LIST-DIRECTED) INPUT SO THAT THE USER 
NEED NOT BE CONCERNED ABOUT COLUMN NUMBERS OR SPACING. RUNGIFI 
PRonpTs ARE OF THE stm TYPE (INTEGER 0R REAL) AS THE NUVERIC 
DATA TO BE ENTERRED. THUS THE USER f'lIGHT RESPOND AS FOLLOWS: 

. . . ENTER IDIN? 2 (INTEGER INPUT FOR INTEGER PROflPT) 

. . l ENTER EMU? 0.1 (REAL INPUT FOR REAL PROfiPTl 

REAL NUflBERS NAY BE ENTERRED AS DECINAL NUnBERS OR WITH E-TYPE 
NOTATION, E.G., 0.1 OR l.E-1. ALPHANUNERIC INPUT DOES NOT 
REQUIRE ENCLOSING QUOTES OR HOLLERITH COUNT - ALL THIS IS HANDLED 
AUTOl'lATICALLV BV RUNGIH. 

ENTER CClRRIAGE RETURN TO CONTINUE 
? 

ERROR PROCESSING (ABORT f’lODE) 

f3T ANY TIME DURING THE USE OF RUNGIR, THE USER MAY ELECT TO HALT 
EXECUTION OF THE PROGRAR BYE ENTERRING THE ABORT CODE8 -999 
RUNGIM WILL THEN SUSPEND EXECUTION AND QUERY THE USER AS TO HOW 
TO PROCEED. 

ENTER CARRIAGE RETURN TO CONTINUE 
3 
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RUNGIR DEFAULTS 

RANY INPUT ITENS HAVE BUILT-IN DEFAULT VALUES FOR COmMONLY SELECTED 
VALUES; THESE DEFMJLTS HAY BE SELECTED BY TYPING A CfiRRIAGE RETURN 
IN RESPONSE TO A PROMPT. DEFAULT VALUES ARE INDICATED IN THE 
PROflPT BY THE PIESSAGE: (DEFAULT - 0.1) (FOR EXAFIPLE). 
SORE PROIIPTS HAVE NO DEFAULTJ THE USER HUST ENTER SOflE VALUE. 
RUNGIN lJILL NOT PERNIT THE USER TO CIRCUNUENT NO-DEFFIULT ITEtlS. 

ENTER CARRIAGE RETURN TO CONTINUE 
? 

COl'lPATIBILITY WITH CURRENT GIf'l CODE DECKS 

RUNGIM I'lODULES FlRE CONATIBLE WITH CURRENT GIII CODE DECKS AS 
INDICFITED BELOUt 

GEON -- GEOf’lC 
INTEG -- INTEGD b INTEGE 
UPDATE -- FlLL VERSIONS 
DYNDIM -- DYNllATC~DYNDIMC 
RNSTRN -- VERSIONS C CSND D OF ALL DECKS 

ENTER CCIRRIAGE RETURN TO CONTINUE 
? 

KNOldN ‘BUGS’ IN RUNGIM 

THE FOLLOWING ClRE KNOWN ‘BUGS’ IN THE RUNGIII flODULESt 

1. GEOfi, UPDC)TE, DYNDIM, AND RNSTRII HCIUE NO KNOWN BUGS. 
2. INTEG IS A NEW NODULE AND MFIY BE ERROR PRONE INITIALLY 

GP ROUTES MfrY BE PARTICULARLY VULNERABLE. 

ENTER CARRIAGE RETURN TO CONTINUE 
3 
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SUGGESTIONS AND COMMENTS 

1. READ RUNGIN PROMPTS CAREFULLY AND FOLLOU DIRECTIONS EXPLICITLY. 
DO NOT ANTICIPATE PROflPTS: UAIT FOR THE PRONPT AND THEN ENTER 
THE DCITCl REQUESTED. 

2. SOflE PROHPTS REQUEST IIORE THAN ONE PIECE OF DATA TO BE INPUT 
PER LINE. ENTER THE EXACT NUMBER OF DATA ITEMS REQUESTED, 
NO PIORE, NO LESS. IIULTIPLE INPUT ITEM ON ONE LINE MY BE 
SEPARATED BY BLCINKS OR COMNAS. DO NOT USE SLMHES (/I. 

3. REFER ALL QUESTIONS, COMIYENTS, SUGGESTIONS, AND KNOWN BUGS TO: 

NICHAEL ROBINSON 
LOCKHEED - HUNTSVILLE 
205-837-1800 EXT-384 

ENTER CARRIAGE RETURN TO CONTINUE 
? 

DO YOU UISH TO REVIEW ANY ITEM? 
ENTER YES OR NO (DEFAULT = NO) 

? 

SELECT RUNGIN NODULES BY THE FOLLOWING CODE(S): 

GEOR - 1 fiATRIX = 2 INTEG = 3 GIIIPLT = 4 
UPDf)TE l 5 DYNDIM = 6 RNSTRR l 7 

ENTER IIODULE CODE(S), ONE CODE/COLUMN 
3 

100 



6.3.3 Supersonic Source Flow (2-D) - GEOM 

The following ,illustrates a complete RUNGIM setup of the input data 

and runstream required to execute the GIM code GEOM module for the super- 

sonic source flow example (Section 8.1, Ref. 6-l). 

/RUNGI)I. 

YOU WILL BE PROflPTED FOR INFORMATION REQUIRED TO CREATE OR ACCESS 
VARIOUS DhTA FILES hND THE RUNSTREhtl 

DO YOU WISH TO SEE INSTRUCTIONS BEFORE PROCEEDING (DEFAULT - NO) 
? 
SELECT RUNGIN nODULES BY THE FOLLOWING CODE(S)t 

GEOI’V - 1 IIATRIX - 2 INTEG = 3 GIMPLT - 4 
UPDATE - 5 DYNDIf’l l 6 RNSTRf’l - 7 

ENTER NODULE CODE(S), ONE CODE/COLUflN 
? 1567 

YOU HAVE SELECTED THE FOLLOWING MODULES: 

GEOfl UPDATE DYNDIN RNSTRN 

ENTER GO TO CONTINUE (DEFAULT = RESELECT MODULES) 
? GO 
--------------------___I________________------------------------------ 

XX NOW ENTERING GEOtS f’lODULE Xlt 

YOU llAY EITHER CICCESS GIN EXISTING (OLD) GEOMETRY DATfi FILE, 
OR CREATE fi NEU ONE 
ENTER OLD OR NEW (DEFAULT - NEW) 

3 
ENTER GEOllETRY DATCI FILE NANE (DEFAULT = STRINP) 

3 GEOHDCIT 
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XX BEGINNING CREATION OF GEORETRY DATA FILE GEOHDC)T tX 
YOU UILL BE PRORPTED FOR INPUT 

ENTER HEADER -- ANY ALPHANUNERIC INFORRATION MY BE USED (DEFAULT = BLANK) 
3 2-D SUPERSONIC SOURCE FLOU CASE -- A TEST FOR RUNGIR 

SPECIFY NURBER OF ZONES INTO WHICH THE FULL DOMAIN IS DIVIDED 
ENTER NZONES -- NO LIRIT (DEFAULT l 1) 

? 
SPECIFY PROBLEU DIRENSIONALITY -- lD, 2D, OR 3D 

ENTER 1, 2, OR 3 (DEFCSULT = 2 1 
3 

SPECIFY ONE-STEP OR TWO-STEP TINE INTEGRATION SCHEflE 
ENTER 1 OR 2 (DEFAULT - 2) 

? 
SPECIFY GENERATION OF BOTH GRID AND FINITE DIFFERENCE NATRICES (01 
OR GRID GENERfiTION ONLY (1) 

ENTER 0 OR 1 (DEFAULT = 0 1 
? 

SPECIFY DO NOT NATE ZONES (0) OR RATE ZONES (1) 
ENTER 0 OR 1 ( DEFfMJLT * 1) 

7 
SPECIFY ELLIPTIC RUN (0) OR QP RUN(l) 

ENTER 0 OR 1 (DEFAULT = 0 1 
? 

SPECIFY NO DEBUG OUTPUT (0) OR PRINT DEBUG OUTPUT (1) 
ENTER 0 OR 1 (DEFAULT l 0 1 

3 
SPECIFY NO PRINTOUT OF EACH ELEPlENT MTRIX (0) 
OR PRINT EVERY NTH ELEflENT MTRIX (NJ 

ENTER 0 OR N CDEFAULT = 0 1 
3 

SPECIFY GRID POINT PRINTOUT FOR BOUNDARY NODES ONLY (0) 
OR FOR EVERY NTH NODE (N) 

ENTER 0 OR N (DEFCIULT l 0) 
7 1 
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SPECIFY FORWRD (F) OR BACKMRD (B) FINITE DIFFERENCES 
FOR EACH TImE STEP AND EACH COORDINATE DIRECTION 

ENTER F OR B FOR: 
STEP 1 -- X DIRECTION (DEFCIULT - F) 

3 
STEP 1 -- Y DIRECTION (DEFAULT - F) 

3 
STEP 2 -- X DIRECTION (DEFAULT - B) 

? 
STEP 2 -- Y DIRECTION (DEFAULT - B) 

? 

BEGIN INPUT DATA FOR ZONE 1 

SPECIFY NUflBER OF SECTIONS WITHIN ZONE 1 
ENTER NSECTS -- NO LIMIT (DEFAULT - 1) 

3 
SPECIFY NUflBER OF SEGflENTS IN EDGE 1 

ENTER NSEGS -- lTO5 (DEFAULT-11 
3 

SPECIFY EDGE SHAPE FUNCTION FOR EDGE 1 
USE THE FOLLOWING CODES: 

LINEAR 
CIRCULAR ARC : :! 

TRIG FUNCTION 
OF X -5 

CONIC SECTION - 3 TRIG FUNCTION 
HELIML ClRC OF THETA 

;P:CIAL FUNCTION - 7 
-6 

ENTER NSHAPE -- 1 TO 7 (DEFAULT - 1) 
3 

SPECIFY NUNBER OF SEGMENTS IN EDGE 2 
ENTER NSEGS -- 1 TO5 (DEFMJLT l 1) 

3 
SPECIFY EDGE SHAPE FUNCTION FOR EDGE 2 

ENTER NSHAPE -- 1707 (DEFAULT - 1) 
?2 
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SPECIFY NUMBER OF SEGtlENTS IN EDGE 3 
ENTER NSEGS -- 1 TO5 (DEFCIULT - 1) 

3 
SPECIFY EDGE SHAPE FUNCTION FOR EDGE 3 

ENTER NSHAPE -- lTO7 (DEFhlJLT-1) 
? 

SPECIFY NUMBER OF SEGMENTS IN EDGE 4 
ENTER NSEGS -- 1105 (DEFfMJLT - 1) 

? 
SPECIFY EDGE SHCIPE FUNCTION FOR EDGE 4 

ENTER NSHAPE -- 1707 (DEFAULT - 1) 
?2 

SPECIFY BOUNDARY C0NDITI0N INDICATOR FOR EDGE 1 
USE THE FOLLOWING CODES% 

CONSTQNT NODES - 0 FREE-SLIP/ 
AXIS NODES -1 TANGENCY 
NO-SLIP/STAG- SPECIAL CASE : g-7 

NATION NODES - 2 ONE-SIDED 
CORNER NODES - 3 DIFFERENCES - 8 

INTERIOR NODES - 9 
ENTER IBWL -- 0TO9 (DEFAULT-91 

?4 
SPECIFY ZONE TO WHICH EDGE 1 IS MATED (0 FOR NO IlATE) 

ENTER flF)TE -- 0 TO 1 (DEFAULT - 0) 
? 

SPECIFY BOUNDARY CONDITION INDICATOR FOR EDGE 2 
ENTER IBWL -- 0 TO 9 (DEFAULT - 9) 

38 
SPECIFY ZONE TO WHICH EDGE 2 IS MTED (0 FOR NO MATE) 

ENTER MC)TE -- 0 TO 1 (DEFAULT l 0) 
? 
SPECIFY BOUNDARY CONDITION INDICATOR FOR EDGE 3 

ENTER IBUL -- 0 TO9 (DEFCIULT - 9) 
34 

SPECIFY ZONE TO WHICH EDGE 3 IS MATED (0 FOR NO MATE) 
ENTER HRTE -- 0 TO 1 (DEFAULT l 0) 

3 
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SPECIFY BOUNDARY CONDITION INDICATOR FOR EDGE 4 
ENTER IBUL -- 8 TO 9 (DEFAULT - 9) 

? 0 
SPECIFY ZONE TO WHICH EDGE 4 IS UATED (0 FOR NO NATE) 

ENTER IWTE -- 8 TO 1 (DEFAULT - 0) 
? 

SPECIFY NODAL NURBERING SEQUENCE ALONG COORDINATE DIRECTIONS 
USE THE FOLLOWING, CODES: 

ETA2, ETA1 - 1 
ETAl, ETA2 - 2 

ENTER ITRf3IN -- 1702 (DEFAULT - 1) 
? 

SPECIFY NUMBER OF NODES IN THE ETA1 DIRECTION 
ENTER NNOD -- 2 TO 100 (NO DEFAULT) 

? 11 
SPECIFY NODAL DISTRIBUTION OPTION IN THE ETA1 DIRECTION 
USE THE FOLLOWING CODES: 

UNIFORI'I SPACING - 0 
REDUCE ETA1 SPACING 0 -1 
INCREASE ETA1 SPClCING - +1 
INPUT LOCATION OF NODES - NNOD 

ENTER ISTRCH -- 0 TO 11 (DEFAULT - 0) 
3 

SPECIFY NUflBER OF NODES IN THE ETA2 DIRECTION 
ENTER NNOD -- 2 TO 100 (NO DEFAULT) 

? 11 
SPECIFY NODAL DISTRIBUTION OPTION IN THE ETA2 DIRECTION 

ENTER ISTRCH -- 0 TO 11 (DEFCIULT - 0) 
? 

INPUT AC COEFFICIENTS FOR ZONE 1 
REFER TO TfiBLE 4-2 IN THE BLUE BOOK FOR CODES 

ENTER 4 AC VALUES FOR EDGE 2 
? 0.0 0.0 0.0 0.0 

ENTER 4 AC WLUES FOR EDGE 4 
3 0.0 0.0 0.0 0.0 
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INPUT POINT COORDINATES, FLOW ANGLES, AND SEGNENT EXTREMALS (IF ANY) 
OBSERVE THE FOLLOWING SEQUENCE FOR 

COORDINATES: 
PTl - X COORDINATE OF POINT 1 
PT2 - Y COORDINATE OF POINT 1 
PT3 - 2 COORDINCITE OF POINT 1 
PT4 - FLOW ANGLE IN THE X-Y PLANE AT POINT 1 
PTS - FLOW ANGLE IN THE X-Z PLANE AT POINT 1 

ETC., FOR EACH POINT 
INPUT COORDINATES OF POINT 1 

ENTER PT ARRAY FOR POINT 1 (5 UALUES/LINE) 
? 0.5 0.0 0.0 0.0 0.0 

INPUT COORDINATES OF POINT 2 
ENTER PT CIRRCIY FOR POINT 2 (5 VALUES/LINE) 

? 1.0 0.0 0.0 0.0 0.0 
INPUT COORDINATES OF POINT 3 

ENTER PT ARRAY FOR POINT 3 (5 VALUES/LINE) 
? 0.96593 0.25882 0.0 15.0 0.0 

INPUT COORDINATES OF POINT 4 
ENTER PT ARRAY FOR POINT 4 (5 UhLUESiLINE) 

? 0.48296 0.12941 0.0 15.0 0.0 
DO YOU WISH TO XEDIT FILE GEOMDAT (DEFAULT - NO) 

? YES 
DO YOU WISH TO SAVE FILE GEOflDCST (DEFCIULT - NO) 

? 

GEOfl COMPLETE -- ESTIPIATED NUNBER OF NODES - 121 

PREPCIRE TO XEDIT FILE GEOMDCIT 
XEDIT 2.1.7 
?3 PX 
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2-D SUPERSONIC SOURCE FLOU CASE -- A TEST FOR RUNGIlg 
1 

: : F 

2 0 1 

1 B B 
: 1 

1: ii 1 

0fti 

0 : ii 

0.: 

: : 

0.0 0.0 ::: 2: 
.5 0.0 
1. 

.96593 .25f;: 

ii:: ii:: 

.48296 .12941 Z :z: 
/EOR 
--EOR-- 
END OF FILE 
?? 0 
GEORDAT IS fi LOCAL FILE 

YOU nw EITHER ficc~ss GIN EXISTING (OLD) UPDATE DIRECTIVE FILE, 
OR CREATE A NEW ONE 
ENTER OLD OR NEW (DEFAULT - NEW) 

3 
ENTER UPDATE DIRECTIVE FILE NANE (DEFCIULT l UPDATE) 

? UPDSRC 



X1: BEGINNING CREATION OF UPDATE DIRECTIVE FILE UPDSRC XX 
A BLANK LINE WILL TERHINATE DIRECTIVE INPUT 
ENTER ONE DIRECTIVE PER LINE 

? tIDENT,SOURCE 
?* 
3* 
3% ANY UPDATE DIRECTIVES 
3 x. 
31: 
? 

DO YOU WISH TO XEDIT FILE UPDSRC (DEFAULT - NO) 
? 

DO YOU WISH TO ShUE FILE UPDSRC (DEFAULT - NO) 
3 

SPECIFY TOTAL NUNBER OF NODES 
ENTER NN (DEFAULT l 121) 

3 
SPECIFY flfi>(IfllJ~ NUMBER OF SPECIAL NODE TERNS 

ENTER NSP -- 0 TO 121 (DEFAULT l 121) 
? 

SPECIFY MAXIMUU NUMBER OF NODES IN A CROSS-PLANE 
ENTER NXMAX (DEFAULT n 11) 

? 
SPECIFY NAXINUfl NUNBER OF NODES IN IIATED PLANES 

ENTER NIIATE (DEFAULT l 11) 
? 

SPECIFY NUMBER OF PLGNES OF NODES SAVED PER RECORD 
ENTER NSW (DEFAULT - 1) 

? 11 
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tX THE UPDATE DIRECTIUES AND DYNMAT INPUT DATA HAVE BEEN COIIBINED tl: 
THE COflBINED FILE NARE IS UPDSRC 

DO YOU WISH TO XEDIT FILE UPDSRC (DEFAULT - NO ) 
3 YES 

DO YOU UISH TO SAUE FILE UPDSRC (DEFAULT - NO ) 
? 

PREPARE TO XEDIT FILE UPDSRC 
XEDIT 2.1.7 
?? PX 
XIDENT,SOURCE 
t 

f f3NY UPDFlTE DIRECTIVES 
1: 
1: 
/EOR 

121 2 121 11 11 11 0 
/EOR 
END OF FILE 
?? Q 
UPDSRC IS A LOCAL FILE 

tl: NOW ENTERING RNSTRN MODULE X1: 

YOU MY EITHER ACCESS AN EXISTING (OLD) RUNSTREAN, 
OR CREATE (5 NEW ONE 
ENTER OLD OR NEW (DEFFIULT - NEW 1 

3 
ENTER RUNSTREAM FILE NANE (DEFAULT l RNSTRR) 

3 RUNSRC 
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X1: BEGINNING CREATION OF RUNSTREM FILE RUNSRC tX 
YOU WILL BE PROflPTED FOR INPUT 

SPECIFY JOBNAUE, FIELD LENGTH, AND TIRE LIplIT 
ENTER JOBNME/FL/TL (DEFAULT IS fiODULE DEPENDENT) 

? RUNSRC/60000/100 
ENTER USER NUIIBER 

3 750978C 
ENTER CHARGE NUNBER 

? 101857 
ENTER GIM MODULE(S) TO BE RUN 

3 GEOflC 
ENTER STAR FILE16 LENGTH (DEFAULT - 4) 

? 
ENTER STAR FILE18 LENGTH (DEFAULT - 12) 

? 
ENTER STAR FILE20 LENGTH (DEFAULT - 4) 

? 
ENTER STCIR GEOI’IB CONTROLLEE FILE LENGTH 

3 600 
IF YOU WISH TO SAVE THE NOS DAYFILE, ENTER THE DAYFILE N&HE 

? NOSDAY 
IF YOU WISH TO SC\UE THE STAR DllYFILE, ENTER THE DCIYFILE NME 

? STRDAY 
DO YOU WISH TO XEDIT FILE RUNSRC (DEFAULT n NO 1 

? YES 
DO YOU WISH TO SAVE FILE RUNSRC (DEFAULT l NO 1 

3 
DO YOU WISH TO AUTONATICALLY SUBMIT THIS JOB (DEFAULT - NO) 

3 

PREPfiRE TO XEDIT FILE RUNSRC 
XEDIT 2.1.7 
13 PX 
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/JOB 
YNOSEQ 
RUNSRC,CN60000,Tl00. 
USER 
CHARGEtLRC 1 
GETtDYNHAT-DYNPlATWUN1838788C) 
GETtOLDPL-GEOf4WUN-838788C) 
UPDATE(F,C=TAPE8) 
DYNllAT. 
COPYCFtTAPE3,GEOHS) 
RElJIND(GEOflS) 
RETURN(OLDPL,TAPE3,TAPE81 
TOSTAR(INPUT,GEOMS) 
DfiYFILEtNOSDAY) 
REPLACEtNOSDAY) 
EXIT. 
DAYFILEtNOSDAY) 
REPLfKEtNOSDAY) 
XOR 
/READ, UPDSRC 
STORE 400SDS RUNSRC B 
STRSIDE,Tl00. 
FORTRANtI-GEOMS,B-GEOflB,O-LB) 
REQUEST(FILEl6/4,T-P) 
REQUEST(FILE18/12,7-P) 
REQUEST(FILEl9/12,T-P) 
REQUEST(FILE20/4,T-P) 
LOfiD(GEOflB,CN-GEONGO,600,GRLPf3LL- 1 
GEONGO. 
T0AS(Z-750978C,FILEl8-BI,FILE20) 
DAYFILEtSTRDhY) 
EXIT. 
TOAS(Z-750978C,FILEl8-BI,FILE20) 
DAYFILEtSTRDAY) 
EXIT. 
/EOR 
/REhD,GEOMDAT 

/EOR 
REVERT. FROII EXRNST 
END OF FILE 
?? Q 
RUNSRC IS A LOCAL FILE 
REVERT. RUNGIM COHPLETE 
0 
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6.3.4 Supersonic Source Flow (2-D) - INTEG 

The following illustrates a complete RUNGIM setup of the input data 

and runstream required to execute the GIM code INTEG module for the super- 

sonic source flow example (Section 8.1, Ref. 6-l). 

/RUNGIN. 

*********************************************************************l 
BEGINNING RUNGIN VERSION DATE: 06/26/81 

YOU lJILL BE PRONPTED FOR INFORMTION REQUIRED TO CREATE OR ACCESS 
VARIOUS DATA FILES AND THE RUNSTREAtl 

DO YOU UISH TO SEE INSTRUCTIONS BEFORE PROCEEDING (DEFAULT - NO) 
3 

SELECT RUNGIfl tlODULES BY THE FOLLOWING CODE(S): 

GEOfl 
UPDATE : : 

MTRIX = 2 INTEG - 3 GIPlPLT - 4 
DYNDIPl = 6 RNSTRN = 7 

ENTER NODULE CODE(S), ONE CODE/COLUflN 
3 3567 

YOU HAVE SELECTED THE FOLLOWING MODULES: 

INTEG UPDATE DYNDIH RNSTRM 

ENTER GO TO CONTINUE (DEFAULT * RESELECT MODULES) 
? GO 
--------------------_____________I______------------------------------ 

Xd NOW ENTERING INTEG UODULE Xt 

YOU MY EITHER ACCESS AN EXISTING (OLD) INTECRCITOR DATCl FILE, 
OR CREATE 6 NEW ONE 
ENTER OLD OR NEW (DEFAULT l NEW) 

3 

ENTER INTEGRCITOR DFlTA FILE NAME (DEFAULT = STRINP) 
3 INTDC)T 
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X1: BEGINNING CRECITION OF INTEGRMOR DM’A FILE INTDhT tX 
YOU UILL BE PROMPTED FOR INPUT 

ENTER ITITLE -- AtiY ALPHANUHERIC INFORflATION tlAY BE USED (DEFAULT - BLANK) 
? 2-D SUPERSONIC SOURCE FLOU CClSE -- A TEST FOR RUNGIH 

SPECIFY PROBLEH DIllENSIONALITY -- fD, 2D, OR 3D 
ENTER 1, 2, OR 3 (DEFAULT - 2 1 

3 
SPECIFY TIME INTEGRATION SCHEllEt 

(1) ONE-STEP ELLIPTIC 
(2) TWO-STEP ELLIPTIC 
(3) QUASI-PhRABOLIC 

ENTER 1, 2, OR 3 (DEFCIULT - 2) 
3 
SPECIFY HAXIMlJfl NUNBER OF TIME-STEP ITERATIONS 

ENTER ITIWX -- NO tImIT (NO DEFAULT) 
3 288 
SPECIFY FLOW FIELD PRINT CONTROL FLAG 
FLOU FIELD WILL BE PRINTED EVERY IPRNT-TH ITERATION 

ENTER IPRNT -- 0 TO 200 (DEFCIULT = 0) 
3 200 
SPECIFY FLOW FIELD SAVE CONTROL FLAG 
FLOU FIELD WILL BE SCIUED (ON FILE 22) EVERY ITSAU-TH ITERATION 

ENTER ITSAU -- 0 TO 200 (DEFAULT = 0) 
3 280 
SPECIFY COLD STClRT RUN (0) OR RESTFlRT RUN (N), 
UHERE N IS THE RECORD NUHBER OF THE STClRTING DhTh ON FILE 22 

ENTER ISTfiRT (DEFAULT l 8) 
? 
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SPECIFY PRINT OUTPUT TYPES 
(1) ONE-LINE OUTPUT -- NODE, X, Y, 2, RHO, U, U, U, 0, E, P, & IB 
(2) TUO-LINE OUTPUT -- M ABOVE PLUS CAR, CS, PHIX, PHIY, SOS, T, b R 
(3) SIMPLIFIED OUTPUT -- NODE, RHO, P, N, PHIX, PHIY, h IB 

ENTER IOTYPE -- 1 TO 3 (DEFAULT - 1) 
?3 

DO YOU IJISH TO PRINT THE ZERO-TH ITERATION3 
ENTER YES OR NO (DEFAULT - YES) 

? 
SPECIFY ENGLISH UNITS (1) OR CGS RETRIC~DIllENSIONLESS UNITS (2) 

ENTER IUNITS -- 1 OR 2 (DEFCIULT = 2 1 
? 

SPECIFY STARTING ITERATION NURBER 
ENTER ITSTRT (DEFAULT * 8) 

3 
SPECIFY TREATMENT OF VISCOSITY TERMS: 

(0) INUISCID EULER EOUATIONS 
(1) NUfiERICAL VISCOSITY (DClHPING) ONLY 
(2) LANINAR VISCOSITY AND DAl'lPING 
(3) BALDWINiLONAX TURBULENCE fiODEL 

ENTER IUISC -- 0 TO 3 (DEFMLT = 0 1 
? 

SPECIFY INUISCID TYPE STARTING SOLUTIONS (8) OR UISCOUS0 
BOUNDARY LCIYER TYPE STARTING SOLUTION (1) FOR NOZZLE FLOWS 

ENTER IDIST -- 0 OR i (DEFAULT m 0) 
3 
SPECIFY ONE IDEAL GAS (0) OR (4 TWO-GAS SYSTEN (1) 

ENTER ISPEC -- 0 OR 1 (DEFAULT = 8) 
? 
SPECIFY SUPERSONIC-TYPE/ONE-SIDED DIFFERENCES (0) OR SUBSONIC-TYPE/ 
MSS BALANCING TECHNIQUE (1) FOR INFLOW AND OUTFLOW BOUNDARIES 
ENTER IDS -- 0 OR 1 (DEFFIULT - 8) 

3 
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SPECIFY PRINT SUMSQ INFORMATION EVERY N-TH ITERATION 
ENTER IPSQ tDEFAULT - 1) 

? 
SPECIFY SUMSQ NORllALIZATION BY 1ST ITERCITION VALUES (81, 
OR NO SUl'lSQ NORllALIZ~TION (1) 

ENTER INORfl -- 0 OR 1 (DEFAULT - 0) 
? 

SPECIFY CALCULATION OF SUMSQ FOR CONSERVED VARIABLES (81, 
OR FOR PRINITIUE UARICIBLES (1) 

ENTER ISBSfl -- 0 OR 1 (DEFFIULT - 0) 
? 

SPECIFY TOTAL NUMBER OF NODES 
ENTER NN -- NO LIflIT (NO DEFAULT) 

? 121 
SPECIFY NUIIBER OF NODES IN THE X-COORDINATE DIRECTION (ZONE 11 

ENTER NNX -- 2 TO 100 (NO DEFAULT) 
? 11 
SPECIFY NODAL POINT INCREl'lENT IN THE X-COORDINATE DIRECTION (ZONE 1) 

ENTER NDX (NO DEFAULT) 
3 11 
SPECIFY NUIIBER OF NODES IN THE Y-COORDINATE DIRECTION (ZONE 1) 

ENTER NNY -- 2 TO 100 (NO DEFAULT) 
? 11 
SPECIFY NODAL POINT INCREMENT IN THE Y-COORDINATE DIRECTION (ZONE 1) 

ENTER NDY (NO DEFAULT) 
?l 
SPECIFY NO SPECIAL TREA’WIENT OF SHhRP EXPANSION CORNERS (0) 
OR NPM SHARP CORNERS ARE TO BE TREClTED EXPLICITLY 

ENTER NPN -- 0 TO 10 (DEFAULT n 0) 
3 
SPECIFY NUNBER OF ZONES (IF FI NULTI-ZONE PROBLEfl) 

ENTER KZONES -- 1 TO 10 (DEFMLT - 1) 
? 
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IF A CONSTANT TIf'lE STEP IS DESIRED, 
ENTER DTINE (DEFAULT - UflRIABLE TIHE STEP SELECTED) 

? 0.5E-2 
SPECIFY CFL FACTOR -- DTflIN - DTFAC X CFL 

ENTER DTFAC -- 0.0 TO 1.0 (DEFAULT = 1.0) 
3 
SPECIFY TINE STEP UPDFITE EVERY INCDT-TH ITERATION 

ENTER INCDT -- 0 TO 200 (DEFAULT - I) 
? 

SPECIFY EXPLICIT METHOD (0) OR IIIPLICIT METHOD (I) 
ENTER IMPL -- 0ORl (DEFAULT-01 

? 
SPECIFY PRANDTL NUMBER 

ENTER REALK (DEFAULT - 0.721 
? 

SPECIFY SPECIFIC HEAT RATIO 
ENTER GAN (DEFAULT - 1.4) 

? 
SPECIFY PlOLECULAR WEIGHT OF THE GAS 

ENTER Wfl (DEFAULT - GAS CONSTANT TO BE SPECIFIED NEXT) 
? 
SPECIFY IDEAL GAS CONSTANT FOR THIS GAS 

ENTER RK (NO DEFAULT) 
? 1.0 
SPECIFY FORWARD (Fl OR BACKWARD (B) FINITE DIFFERENCES 
FOR EACH TIflE STEP AND EACH COORDINATE DIRECTION 

ENTER F OR B FOR: 
STEP 1 -- X DIRECTION (DEFAULT 9 F) 

? 
STEP 1 -- Y DIRECTION (DEFAULT l F) 

? 
STEP 2 -- X DIRECTION (DEFAULT - B) 

? 
STEP 2 -- Y DIRECTION (DEFAULT l B) 

? 

116 



DO YOU UISH TO USE NOZZLE-FLOU TYPE INITIALIZATION? 
ENTER YES OR NO (DEFAULT - NO) 

3 

BEGIN FLOU FIELD INITIALIZATION -- USE AS MhNY SPECIFICATIONS AS REQUIRED 
SPECIFY FIRST NODE TO BE INITIfiLIZED BY SPECIFICATION 1 

ENTER NJ -- 1 TO 121 ( DEFFlULT - TERMINhTE FLOW FIELD INITIhLIZhTION) 
71 

SPECIFY NODE NUMBER INCRERENT 
ENTER INC (DEFAULT - 8) 

7 I 
SPECIFY TOTAL NUNBER OF NODES SET BY SPECIFICATION 1 

ENTER NTOT -- 1 TO 121 (DEFCIULT - I) 
7 121 

SPECIFY INPUT OF VELOCITY COHPONENTS (0) OR TOTCIL VELOCITY (I) 
ENTER ITCIN -- 0ORl (DEFAULT-l) 

3 
SPECIFY TYPE OF INITIALIZATION TO BE DONE BY SPECIFICATION 1 

(0) INPUT INITIAL CONDITIONS NEXT 
(1) USE NOZZLE FLOW INITIALIZATION OPTION (ELLIPTIC ONLY) 
(21 USE CONDITIONS ENTERRED FOR PREVIOUS SPECIFICATION 
(3) USE THE USERIP OPTION 

ENTER ITYPE -- 8 TO 3 (DEFAULT l 0) 
? 

SPECIFY FLOU FIELD INITIAL CONDITIONS -- SPECIFICATION 1 
ENTER THE FOLLOUINGt (NO DEFAULT 1 

IIASS DENSITY 
3 1.4 

TOT&L VELOCITY 
3 2.8 

STATIC PRESSURE 
3 1.e 

117 



SPECIFY FIRST NODE TO BE INITIALIZED BY SPECIFICATION 2 
ENTER NJ -- 1 TO 121 (DEFAULT - TERfiINFlTE FLOW FIELD INITIALIZATION) 

? 
BEGIN NODAL OUTPUT CONTROL SPECIFCATIONS -- USE AS PlANY AS REQUIRED 
OUTPUT IS RESTRICTED TO 121 NODES 
SPECIFY FIRST NODE TO BE PRINTED BY SPECIFICATION 1 

ENTER Nl -- 1 TO 121 (DEFAULT - TERNINATE FLOW FIELD OUTPUT SPECIFICATION) 
? 1 

SPECIFY NODE NUllBER INCREMENT 
ENTER IC (DEFAULT - 0) 

? 1 
SPECIFY TOTAL NUflBER OF NODES TO BE PRINTED BY SPECIFICATION 1 

ENTER NT -- 1 TO 121 (DEFGMJLT = 1) 
? 121 

SPECIFY FIRST NODE TO BE PRINTED BY SPECIFICATION 2 
ENTER Nl -- 1 TO 121 (DEFAULT - TERflINATE FLOW FIELD OUTPUT SPECIFICATION) 

? 
DO YOU WISH TO XEDIT FILE INTDAT (DEFAULT - NO) 

? YES 
DO YOU WISH TO SAVE FILE INTDAT (DEFAULT * NO) 

3 

PREPARE TO XEDIT FILE INTDAT 
XEDIT 2.1.7 
?? PX 



2-D SUPERSONIC SOURCE FLOW CASE -- A TEST FOR RUNGIM 
2 2 200 200 288 0 -3 2 e e e 0 e e e 
I e 

.5eeed 121 1. 1: eeeek 1 i 1 0 1 

8.8 .?2 1.4 0.0 8.8 8.0 8.8 0.0 8.0 8.8 8.8 8.8 ::: 
8.8 
0.8 8.8 8.8 8.0 

F F B 
8.0 e.i 0.8 0 8.8 8.8 

1 1 121 at 0 
1.4 8.8 0.8 1. 8.0 

-1 
-: 1 121 

/EOR 
--EOR-- 
END OF FILE 
?? 0 
INTDAT IS FI LOCAL FILE 

YOU VW EITHER ACCESS AN EXISTING (OLD) UPDATE DIRECTIVE FILE, 
OR CREATE A NEW ONE 
ENTER OLD OR NEW (DEFAULT - NEW) 

? OLD 
ENTER UPDATE DIRECTIVE FILE NANEAJSER NUflBER (DEFAULT = ULOGIN NUflBER) 

? UPDSRC 
DO YOU WISH TO XEDIT FILE UPDSRC (DEFCIULT l NO) 

3 
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ARE THE UPDhTE DIRECTIVES AND DYNDIN INPUT DATA BOTH ON FILE UPDSRC 
ENTER YES OR NO (NO DEFAULT) 

? NO 
SPECIFY ELLIPTIC RUN (0) OR QP RUN (1) 

ENTER 0 OR 1 (DEFAULT - 8) 
? 

SPECIFY TOTAL NUMBER OF NODES 
ENTER NN (DEFAULT - 121) 

? 
SPECIFY MAXIMUM NUNBER OF SPECIAL NODE TERM 

ENTER NSP -- 0 TO 121 (DEFAULT - 121) 
? 

SPECIFY flAXIMUM NUIIBER OF BOUNDARY NODES 
ENTER llNB -- 0 TO 121 (DEFAULT - 121) 

? 
SPECIFY NUNBER OF RECORDS OF DATA ON FILE20 

ENTER IREC tD,EFAlJLT - 1) 
? 

tl: THE UPDATE DIRECTIUES AND DYNDIM INPUT DATA HAVE BEEN CONBINED XX 
THE COI'IBINED FILE NAME IS UPDSRC 

DO YOU WISH TO XEDIT FILE UPDSRC (DEFAULT - NO) 
? YES 

DO YOU WISH TO SAVE FILE UPDSRC (DEFAULT = NO1 
? 

PREPfiRE TO XEDIT FILE UPDSRC 
XEDIT 2.1.7 
13 
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XIDENT,SOURCE 
* 
* 
1: ANY UPDATE DIRECTIVES 
1: 
1: 
/EOR 

121 2 0 121 121 0 1 
/EOR 
END OF FILE 
?? 0 
UPDSRC IS A LOCAL FILE 

YOU MAY EITHER ACCESS AN EXISTING (OLD) RUNSTREAN, 
OR CREATE A NEW ONE 
ENTER OLD OR NEW (DEFAULT l NEW) 

? 
ENTER RUNSTREAII FILE NAPlE (DEFCIULT l RNSTRN) 

? RUNSRC 

Xx BEGINNING CREATION OF RUNSTREAM FILE RUNSRC Xt 
YOU WILL BE PROMPTED FOR INPUT 

SPECIFY JOBNAME, FIELD LENGTH, AND TINE LIflIT 
ENTER JOBNhME/FL/TL (DEFAULT IS NODULE DEPENDENT) 

? RUNSRC/60000/100 
ENTER USER NUflBER 

? - xxxxxxc 
ENTER CHARGE NUNBER 

3 xxxxxx 
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ENTER GIR NODULE(S) TO BE RUN 
? INTEGD 

ENTER NOS FILE17 NAflE 
? TAPE17 

ENTER NOS FILE20 NAf’lE 
? TAPE20 

ENTER STAR FILE22 LENGTH (DEFFIULT - 3) 
? 

ENTER STAR INTGB BINARY FILE LENGTH (DEF'AULT - ieel 
? 

ENTER STAR INTGB CONTROLLEE FILE LENGTH 
7 lee0 

IF YOU WISH TO SAVE THE NOS DAYFILE, ENTER THE DAYFILE NANE 
? NOSDAY 

IF YOU WISH TO SAVE THE STAR DAYFILE, ENTER THE DAYFILE NAPlE 
? STRDhY 

DO YOU WISH TO XEDIT FILE RUNSRC (DEFAULT l NO) 
? YES 

DO YOU WISH TO SAVE FILE RUNSRC (DEFCIULT - NO) 
? 

DO YOU WISH TO AUTONATICALLY SUBIIIT THIS JOB (DEFAULT - NO) 
3 

PREPClRE TO XEDIT FILE RUNSRC 
XEDIT 2.1.7 
?3 PX 
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DAYFILE(STRDAY) 
/JOB EXIT. 
/NOSE0 /EOR 
RUNSRC,CH68080,Tl00. /READ,STRINP 
USER /EOR 
CHARGE (LRC ) REVERT. FROM EXRNST 
GETtDYNDIR-DYNDInCdJN-838700C) END OF FILE 
GETtOLDPL-INTEGDAJN-838788C) ?? 0 
UPDATE(F,C*TAPE8) RUNSRC IS A LOCAL FILE 
DYNDIfl. REVERT. RUNGIfl CONPLETE 
COPYCF(TAPE3,INTGS) / 
REWINDtINTGS) 
RETURN(OLDPL,TAPE3,TAPE8) 
ATTACH(FILEl7-TAPE171 
ATTACH(FILE20-TAPE201 
TOSTAR(INPUT,INTGS,FILE20,FILEl7-BI~Al~ 
DAYFILEtNOSDAY) 
REPLACEtNOSDAY) 
EXIT. 
DAYFILE(NOSDAY) 
REPLACEtNOSDAY) 
/EOR 
/READ, UPDSRC 
STORE 400SDS RUNSRC B 
STRSIDE,Tl00. 
REQUEST(FILE22/3,7-P) 
FORTRANtI-INTGS,B-INTGB~l@0,O*LB1 
LOAD(INTGB,CN-INTEGO,l000 
,GRLP-XTMUEC,XPRIN,XEBUF,%TURB,%UPROP,%UBUF,%BOUND,%STEP 
,GRLP-XXBUFl,GRLP-XXBUF2,GRLP-%T~U,%QPNOD,%SECORD 
,GRSP-XCNTRL,tUCOEF,%TD~T~,%UECP,%SQ,%Pfi,%SUBSBC,%USER 
,XSTEPI,XQPCON,tQPPRNT,%CUGCOfl,%AXSYfl 
,GROL-%QBfihP) 
INTEGO. 
TOAS(Z-FILE22) 
DAYFILE(STRDAY) 
EXIT. 
Tohs(Z- FILE221 
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6.4 CURRENT STATUS OF RUNGIM 

RUNGIM is operational and available to all remote terminal GIM code 

users who wish to use it. The MATRIX and GIMPLT modules of RUNGIM are 

not yet operational but will be in the near future. All RUNGIM users should 

occasionally check the “KNOWN BUGS’ section of the instructions for any 

recently discovered problems in the code,? Any problems, questions, comments, 

or suggestions should be directed to Michael Robinson, Lockheed-Huntsville, 

205-837-1800, ext 384. 
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SECTION 6 REFERENCE 

6.1. Spradley, Lawrence, W., and Mark Pearson, “GIM Code User’s Manual 
for the STAR-100 Computer, ” NASA CR 3157, LMSC-HREC TR D568850, 
November, 1979. 
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7. CALCULATION OF THE FLOW FIELD ABOUT A WING-BODY 
CONFIGURATION 

7.1 INTRODUCTION 

Figure 7-l depicts the wing body configuration for which the flow field 

was computed using the hyperbolic GIM/STAR computer code. The com- 
plete configuration is 0.355 m in length with a 70 deg swept wing. The upper 

wing surface is a flat plate aligned with the longitudinal center line of the body. 

The lower wing surface makes a 3-deg angle with the longitudinal center and 

a 8.712 deg normal to the wing leading edge. The forebody, which is 0.173 m 
in length, is described by a power law function. The cylindrical afterbody 

is 0.1822 m in length. The freestream conditions, which are shown in Fig. 

7-1, represent a flight altitude of approximately 30,480 m. Since these cal- 

culations represent the initial attempt to compute a wing-body configuration 

with GIM all computations were done for zero angle of attack. 

Section 7.2 presents a discussion of the development of the solution. An 

analysis of the final solution is given in Section 7.3. This discussion is divided 

into two parts: (1) the flow field over the forebody, and (2) the flow field over 

the afterbody. 

7.2 DEVELOPMENT OF THE SOLUTION 

7.2.1 Forebody Flow Field 

As a matter of convenience, the computational domain was constructed 

with the input boundary beginning .003 m aft of the forebody nose. The stag- 
nation region and leading edges could be treated with code, but it is not neces- 

sary here. We can easily use tables for these inputs. The outer boundary of 
the freestream was made to conform to the anticipated shape of the bow shock. 
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Since all computations were made for a pitch plane orientation (no yaw), a 

symmetry plane was employed. Figure 7-2 depicts the computational mesh 

on the body and symmetry plane. Figure 7-3 shows the body and outer sur- 

face grids while Fig. 7-4 presents the body, symmetry plane, and outer surface 

mesh points. The computational grid for a typical cross-plane is shown in 

Fig. 7-5. Equal nodal spacing was used in the cross-plane directions, 

while a mild stretching function was employed in the main flow direction in 

order to obtain the desired resolution of the bow shock in the nose region. 

7.2.2 Afterbody Flow Field 

The computational domain for the afterbody was constructed to adequately 

describe the wing without becoming prohibitatively large. As with the fore- 

body a sytnrnetry plane was employed, and since base flow calculations are 

not feasible with a hyperbolic or parabolic method, ,the computational domain 

extends only to the wing trailing edge. A sharp wing leading edge was employed 

and the wing-body juncture has been modeled as a distinct three-dimensional 

external corner. Figures 7-6 and 7-7 present perspective views of the com- 

putational mesh on the wing and body surfaces. Figure 7-8 and 7-9 show the 

computational mesh on the upper and lower wing surfaces. Figure 7-10 is a 

side view of the mesh on the after body. The thickness of the wing can be 

seen in this view. In Fig. 7-11 a three-dimensional view of the computational 

mesh on the wing, the body, and the outer surfaces of the computational domain 

is shown. Figure 7-12 is a plot of the complete mesh on the final three com- 

putational planes. 

In order to accurately describe the wing, the upper and lower wing sur- 

face mesh points had to be at the same spatial location on the initial plane. 

This results in several dual points occuring at the intersection of the wing 

with the body (See Fig. 7-13). As Figs. 7-14 through 7-19 depict, the wing 

mesh spacing becomes larger as the trailing edge is approached. 

Since the computational mesh was very dense on the forward 20% of the 

wing, the finite difference analogs had to be examined closely in this area. 
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Because of the presence of the dual points, the analogs on the initial plane 

are somewhat suspect. However, since the flowfield values on the initial 

plane are input and not computed, these analogs were not used directly in 

the calculations. The analogs on the second plane, which are influenced by 

the initial plane geometry, were examined carefully and are correct. 

7.3 RESULTS AND DISCUSSION 

7.3.1 Forebody Flow Field 

A 10830-node computational grid with 361 nodes in a cross-plane was 

used to compute the flow field about the forebody. The solid boundaries were 

treated in an inviscid manner. The bow shock was attached to the nose and 

held fixed for the initial plane. For subsequent planes the shock location and 

jump conditions were determined from the governing equations. These com- 

putations required 210.0 CPU seconds on the CYBER 203 to obtain the final 

solution. Figure 7-20 shows the velocity vectors on the symmetry plane, 

and Fig. 7-21 provides a magnified view of the nose region. The bow shock 

lies close to the body near the nose, and dissipates as the flow expands back 

to freestream near the base. Figure 7-22 depicts the static pressure contours 

over the symmetry plane. Figure 7-23 shows the cross-plane static pressure 

contours on a plane that is .022 m from the nose. This figure depicts the 

near proximity of the bow shock to the missile body. Figure 7-24 presents 

the static pressures on the final cross-plane. The bow shock has dissipakd 
by this time, and the flow has expanded back to freestream. 

7.3.2 Afterbody Flow Field 

The computational grid for the afterbody contained 9796 nodes with 316 

nodes in each cross plane. The solid boundaries with the exception of the 

wing leading edge and the wing-body juncture point were treated in an inviscid 

manner. The wing leading edges were initialized to inviscid post shock values 

and held fixed during the calculations. This was done for convenience only 

129 



since the downstream shock conditions can be determined from shock tables. 

Tangency conditions could also have been used; however, this would require 

additional mesh points to permit the formation of the shock. The wing- body 

juncture presented a unique problem and was dealt with in a special manner. 

Inviscid corner flow conditions were used at the wing-body juncture. As 

subsequent planes were computed the mesh spacing in the vicinity of the 

corner became larger and larger. The divergence of the mesh is due to the 

incompatibility of the grid structure over different components of aircraft 

configurations. The solution to this problem is to use grid imbedding tech- 

niques to achieve grid resolution where it is required; however, time and 

budget restrictions did not permit this refinement. Inviscid boundary con- 

ditions could normally be applied if the mesh were tight enough. Since this 

refinement was not possible, the corner flow field conditions were held fixed 

in time at the final values of the first five corner points. The first five points 

along the wing/body juncture appeared to be fine because they were not affected 

by the mesh divergence problem. The implementation of the above two “special” 

boundary conditions did not create any perturbations in the computed flow 

field. These computations required 334 CPU seconds on the CYBER 203 to 

obtain the final solution. For more details of the computational procedure 

utilized in the wing/body problem please refer to Ref. 7-l. 

Cross-plane velocity vector plots for planes 5, 10, 15, 20, 25 and the 

final plane are presented in Figs. 7-25 to 7-30, respectively. The fact that 

the velocity vectors on the lower wing surface seem to be coming directly 

out of the wing is an illusion created by the fact that only cross-plane com- 

ponents are plotted. Each of these vectors has a much larger component 

directed into the plane of the plots. These plots depict the presence of the 

formation of vortices particularly from the lower wing surface. 

Static pressure contours are presented for planes 5, 10, 15, 20, 25 and 

the final plane in Figs. 7-31 through 7-36, respectively. A high pressure 

region is produced on the lower wing surface while the upper surface remains 

virtually at freestream conditions. 
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Figures 7-37 and 7-38 show the velocity vectors and static pressure 

contours, respectively on the wing upper surface for the grid of Fig. 7-8. 

Figures 7-39 and 7-40, respectively, depict the same type of plots on the 

wing lower surface for the grid of Fig. 7-9. The velocity vectors and pres- 

sure contours are shown in Figs. 7-41 and 7-42, respectively, for the grid 

of Fig. 7-10. 

7.3.3 Comparison with Experimental Data 

Experimental data for this configuration was obtained from the NASA- 

Langley Research Center. 

Figures 7-43 and 7-44 present a comparison between GIM results and 

this experimental data for the wing/body configuration. As Fig. 7-43 depicts, 

t.he GIM results compare extremely well with the experimental data with GIM 

predicting slightly more over-expansion than the data. The spanwise pres- 

sure distribution in Fig. 7-44 shows good comparison between GIM and exper- 

iment. The slight deviation between the GIM predictions and the experimental 

data near the wing leading edge is due to the imposition of the fixed post shock 

boundary condition on the wing leading edge. 

SECTION 7 REFERENCE 

7.1. Xiques, K. E. et al., “Computation of Three-Dimensional Inviscid 
Flow over a Hypersonic Missile Configuration Using the GIM Code,” 
AIAA Paper 82-0248, 20th Aerospace Sciences Meeting, Orlando, Fla., 
11/14 January 1982. 
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Note: All dlmenslons in meters 

Frees tream 

y = 1.4 

M = 6.02 

Fig. 7-l - Wing-Body Configuration 
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Fig. 7-3 - Forebody Computational Mesh (Body Surface and Outer 
Surface) 
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Fig.7-4 - Forebody Computational Mesh (Body Surface, Sy-nxmetry 
Plane, and Jnter Surface) 

135 



Body - 

Fig. 7-5 - Computational Mesh for a Typical Cross-Plane 
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Fig. 7-6 - Computational Mesh on Wing-Body Surface 
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Fig. 7-7 - Computational Mesh on Wing-Body Surface (aft view) 
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Wing-Body 
;Junc tur e 

Fig.7-8 - Computational Mesh on the Upper Wing Surface Viewed from Above 
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Wing - Body 
June tur e 

Fig. 7-9 - Computational Mesh on the Lower Wing Surface Viewed from Below 
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Fig. 7-10 - Computational Mesh on Afterbody Surface 
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Fig. 7-11 - Computational Mesh on the Wing-Body and Outer 
Surfaces (Aft View) 
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Fig. 7-12 - Three-Dimensional Grid for Final Three Computation 
Planes (Aft View) 
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Fig.7-13 - Afterbody Cross-Plane Grid, Initial Plane, X = 0.1730 m 
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Fig. 7-14 - Afterbody Cross - 
Plane Grid, Plane 5, X = O-1973 m 
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Fig. 7-15 - Afterbody Cross-Plane Grid, Plane 10, X = 0.2276 m 
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Fig. 7-16 - Afterbody Cross-Plane Grid, Plane 15, X = 0.2641 m 
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Fig. 7-17 - Afterbody Gross-Plane Grid, Plane 20, X = 0.2884 m 
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Fig. 7-18 - Afterbody Cross-Plane Grid, Plane 25, X = 0.3188 m 
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Fig. 7-19 - Afterbody Cross-Plane Grid, Final Plane, X = 0.3551 m 
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Fig. 7-20 - Forebody Velocity Vectors (Symmetry Plane) 
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Fig. 7-21 - Forebody Velocity Vectors, Nose Region (Symmetry Plane) 
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Fig. 7-22 - Static Pressure Contours (Symmetry Plane) 
(PO = 1.0 lbf/ft2 = 0.04788 k Pa) 
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Fig. 7-23 - Cross-Plane Stftic Pressure Contours (X = 0.02178 m) 
(PO = 1.0 lbf/ft = 0.04788 k Pa) 
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Fig. 7-24 - Cross-Plane Static Pressure Contours (Final Plane) 
(PO = 1.0 1Id/rt2 = 0.04788 k Pa) 
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Fig. 7-25 - Afterbody Cross-Plane Velocity Vector Plots (Plane 5) 
X = 0.1972 m 
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Fig. 7-26 - Afterbody Cross-Plane Velocity Vector Plots (Plane 10) 
x = 0.2276 m 
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Fig. 7-27 - Afterbody Cross-Plane Velocity Vector Plots (Plane 1.5) 
X = 0.2641 m 
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Fig. 7-28 - Afterbody Cross-Plane Velocity Vector Plots (Plane 20) 
x= 0.2883 m 
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Fig. 7-29 - Afterbody Cross-Plane Velocity Vector Plots (Plane 25) 
X = 0.3188 m 
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Fig. 7-30 - Afterbody Gross -Plane Velocity Vector Plots (Final Plane) 
X = 0.3551 m 

161 



p/p 
0 

Fig. 7-31 - Static Pressure Contours for Plane 5, X = 0.1973 m 
(PO = 1.0 lbf/ft2 = 0.04788 k Pa) 
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Fig. 7-32 - Static Pressure Contours for Plane 10, X = 0.2276 m 
lPO 

= 1.0 Ibf/ft2 = 0.04788 k Pa) 
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Fig. 7-33 - Static Pressure Contours for Plane 15, X = 0.2641 m 
tpO 

= 1.0 lbf/ft2 = 0.04788 k Pa) 

164 



Fig. 7-34 - Static Pressure Contours for Plane 20, X = 0.2883 m 

tpO 
= 1.0 lbf/ft2 = 0.04788 k Pa) 
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Fig. 7-35 - Static Pressure Contours for Plane 25, X = 0.3188 m 

tpO 
= 1.0 lbf/ft’ = 0.04788 k Pa) 
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Fig. 7-36 - Static Pressure Contours for Final Plane, X = 0.3551 m 
(PO = 1.0 lbf/ft2 = 0.04788 k Pa) 
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Fig. 7-37 - Upper Wing Surface Velocity Vectors 
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Fig. 7-38 - Upper Wing Susface Static Pressure Contours 
(PO = 1.0 lbf/ft = 0.04788 k Pa) 
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Fig. 7-39 - Lower Wing Surface Veloc,ity Vectors 
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Fig. 7-40 - Lower Wing Surface Static Pressure Contours 
(PO 

= 1 .O lbf/ft2 = 0.04778 k Pa) 
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Fig. 7-41 - Body Surface Velocity Vector 
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Fig. 7-42 - Body Surface Static Pressure Contours 
(PO = 1.0 Ibf/ft2 = 0.04788 k Pa) 
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Fig. 7-43 - Surface Pressure Profile on Forebody 
(PO0 = 24.3 lbf/ft2 = 1.1634 k Pa) 
(Z. = 1.0 ft = 0.3048 m) 
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Fig. 7-44 - Spanwise Pressure Distribution 
Z = 0.2804 m 
(P = 24.3 lbf/ft2 = 1.1634 k Pa) 
(YZ = 1.0 ft = 0.3048 m) 
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